We present an online, open, and comprehensive template library of gravitational waveforms produced during the tidal disruptions of stars by massive black holes, spanning a broad space of parameters. We build this library thanks to a new feature that we implement in the general relativistic version of phantom, a smoothed particle hydrodynamics code for three dimensional simulations in general relativity. We first perform a series of numerical tests to show that the gravitational wave (GW) signal obtained is in excellent agreement with the one expected from theory. This benchmark is done for well studied scenarios (such as binary stellar systems). We then apply our code to calculate the GW signals from tidal disruption events, finding that our results are consistent with the theoretical estimates obtained in previous studies for selected parameters. We illustrate interesting results from the catalog, where we stress how the gravitational signal is affected by variations of some parameters (like black hole spin, stellar orbital eccentricity, and inclination). The full catalog is available online. It is intended to be a living catalog.

Gravitational waves from tidal disruption events: An open and comprehensive catalog / M. Toscani, G. Lodato, D.J. Price, D. Liptai. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 510:1(2022 Feb), pp. 992-1001. [10.1093/mnras/stab3384]

Gravitational waves from tidal disruption events: An open and comprehensive catalog

M. Toscani
Primo
;
G. Lodato
Secondo
;
2022

Abstract

We present an online, open, and comprehensive template library of gravitational waveforms produced during the tidal disruptions of stars by massive black holes, spanning a broad space of parameters. We build this library thanks to a new feature that we implement in the general relativistic version of phantom, a smoothed particle hydrodynamics code for three dimensional simulations in general relativity. We first perform a series of numerical tests to show that the gravitational wave (GW) signal obtained is in excellent agreement with the one expected from theory. This benchmark is done for well studied scenarios (such as binary stellar systems). We then apply our code to calculate the GW signals from tidal disruption events, finding that our results are consistent with the theoretical estimates obtained in previous studies for selected parameters. We illustrate interesting results from the catalog, where we stress how the gravitational signal is affected by variations of some parameters (like black hole spin, stellar orbital eccentricity, and inclination). The full catalog is available online. It is intended to be a living catalog.
accretion, accretion discs; black hole physics; gravitational waves; hydrodynamics; methods: numerical
Settore FIS/05 - Astronomia e Astrofisica
   Dust and gas in planet forming discs (DUSTBUSTER)
   DUSTBUSTER
   EUROPEAN COMMISSION
   H2020
   823823
feb-2022
3-dic-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Toscanietal_2022.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Toscanietal_2022_arxiv.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/921343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact