A captivating challenge for environmental catalysis is nowadays the rational design of efficient catalysts able to take on the new challenges in energy, economy, and environment sustainability of industrial processes. A catalytic structure must be developed so as to be active, stable, resistant, when working in the presence of poisons (e.g., water, sulphur), but also easily to handle and manage, non-toxic, biocompatible and bioavailable in the view of environment sustainability and circular economy. In this scenario, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has emerged as bio-material characterized by interesting properties (e.g., thermal/chemical stability, low water solubility, modest morphological properties, and intrinsic amphotericity of surface), which make it a promising support for active metal phases (e.g., Cu, Fe, Mn, Sn), giving rise to heterogeneous catalysts for reactions of industrial chemistry and environment protection. The main scope of this Thesis under the joint supervision between Università degli Studi di Milano (Italy) and Université Claude Bernard Lyon 1 (France) is to develop eco-friendly HAP-based catalysts for environmental reactions devoted to the abatement of nitrogen-containing air pollutants (NOx, NH3, and N2O). During three years of work a commercial bare HAP, coming from the NOVOSOL® process (patented procedure by Solvay), has been at first characterized to assess its applicability as support for innovative eco-friendly catalysts for air-quality protection. The used hydroxyapatite was proven to be a mesoporous, crystalline material characterized by good thermal and chemical stability. Considering that HAP possesses a multifunctional surface, whose acid and basic sites may act as anchoring centres for the immobilization of metal species, it has been properly functionalized with selected metal species, in particular Cu(II) and/or Fe(III), from nitrate precursors in different amount (1 < wt.% Me < 13), according to a wet deposition procedure (contact time of 15 min, 24 h, or 48 h, T = 40°C, calcination at 500°C for 1 h), already reported in previous studies. In this way, different series of metal loaded HAP-catalysts (mono- and bi-metallic) have been obtained, varying some parameters (i.e., metal loading, pH of the Fe-precursor solution, and time of contact between the bare HAP support and the aqueous metal solution) during the preparation. Morphology, structure, acidity, metal speciation and sitting at the HAP surface have been studied through targeted physico-chemical techniques (e.g., N2-physisorption, XRPD, NH3-titration, UV-DR, Mӧssbauer, XP, and EXAFS spectroscopies, CO adsorption at -196°C followed by FT-IR, TEM-EDX) to elucidate the main bulk and surface properties. In general, a complex scenario emerged. The copper- and/or iron-introduction onto HAP did not cause evident modifications in the sample morphology, independently on the metal nature and loading. All the samples were described by mesoporosity and only minor microporosity: they were characterized by surface area values in 60-95 m2·g-1 interval, according to the N2 adsorption/desorption isotherms collected at -196°C. Concerning copper-HAP samples, UV-DRS results indicated that the copper-phase was present in highly dispersed and isolated ions/small nanoclusters onto HAP. However, when the Cu-concentration onto HAP was higher than 6 wt.%, copper-species additionally reacted with phosphate groups at the HAP surface, giving rise to a further Cu-containing crystalline phase (libethenite, JCPDS: 00-036-0404), revealed by XRPD and TEM-EDX. Regarding iron-HAP samples, UV-DRS, Mössbauer and XPS results indicated that both isolated and aggregated Fe-species were present on all the catalyst surfaces. Eventually, the bimetallic samples were characterized by a higher dispersion of metal species than the monometallic counterparts, as revealed by NH3-titrations, TEM-EDX, and XPS analyses. Three environmental reactions have been then selected to abate NOx, NH3, and N2O: NH3-SCR, Selective Catalytic Reduction of NOx by NH3, NH3-SCO, Selective Catalytic Oxidation of NH3, and the catalytic N2O-decomposition reaction. Catalytic tests have been performed in continuous reaction lines equipped with flow reactor and inline instruments (FT-IR and µ-GC) for quantitative analysis of fed/vented gaseous species. The catalytic performances have been studied under ideal and quasi-real feeding, also evaluating the time-on-stream stability, reusability and the resistance to some poisoning species (e.g., sulphur dioxide, alkaline species) of selected samples. Copper-HAP samples have been studied in the NH3-SCR and the N2O-decomposition reaction. The observed catalytic performances under ideal- and quasi-real feeding mixtures suggested that the SCR activity was driven by the Cu-dispersion, as reported for Cu-zeolites. However, the studied Cu-HAP samples were less active than conventional Cu-based systems, even if selectivity to the desired N2 higher than 93% was obtained in the whole temperature range studied. Considering that N2O could be obtained as the undesired by-product due to the unselective NH3 oxidation by O2 for temperatures higher than 400°C in the NH3-SCR, Cu-HAP samples have been additionally studied in the N2O decomposition reaction in the view of their potential use for reducing N2O emissions in post-treatment approaches. The obtained results indicated that Cu-HAP samples can be valid alternatives to some conventional catalytic systems because they require ca. 450°C to efficiently decompose N2O. Differently from what observed in the NH3-SCR, here the catalytic activity was governed by the Cu-Cu distance, according to the reaction mechanism known for Cu-zeolites. Indeed, the most active catalyst possessed dispersed copper-species together with small Cu-aggregates, providing the ideal active sites with the optimal Cu-Cu distance. Iron-HAP catalysts have been tested in the NH3-SCR, NH3-SCO, and N2O-decomposition reactions. They showed modest catalytic performances in the studied reactions, but they remained less active than commercial Fe-based systems. However, they have been studied to evaluate their potentialities for the abatement of gaseous pollutants among the worst of our environment. The obtained results indicated that the studied environmental reactions could be also performed in a single cascade process to achieve the desired zero-emissions goal. For the cascade process, the most promising catalyst among those studied is at an average concentration of Fe (about 6–9 wt.%), to guarantee a surface composed of isolated Fe3+ ions or oligonuclear species that ensure good activity with an equally good selectivity. Eventually, bimetallic copper iron-HAP catalysts have been studied in the NH3-SCR reaction. The obtained results indicated that they were active under both dry/wet feeding, even if they remained less active than conventional bimetallic zeolites. Their activity seemed to be governed by the total metal dispersion, even if, when the catalytic performances of the bimetallic samples were compared with those of the monometallic counterparts, no clear trend of activity was identified due to the fact that the metal-phase could experience different environment, if present alone onto HAP or copresent with another one. To cut a long story short, results obtained in this Thesis enlightened the potential use of hydroxyapatite as promising eco-friendly support for environmental reactions devoted to the abatement of nitrogen-containing air pollutants (NOx, NH3, and N2O). Even if the obtained copper and/or iron hydroxyapatite-based catalysts are not as performant as the commercial catalytic systems, it seems that the suitable route to obtain ever more active and effective HAP-based catalysts is the suitable control of the surface metal distribution onto HAP that is not an easy task. In this context, also in accordance with the positive effects of these innovative HAP-based catalysts on the environment, current investigations are ongoing to develop ever more effective sustainable catalysts for air-quality protection.

DEVELOPMENT OF METAL FUNCTIONALIZED HYDROXYAPATITE CATALYSTS FOR AIR-QUALITY PROTECTION / M.g. Galloni ; supervisor: A. GERVASINI ; co-supervisor: A. GIROIR-FENDLER ; coordinator: D. M. ROBERTO. Dipartimento di Chimica, 2022 Apr 13. 34. ciclo, Anno Accademico 2021.

DEVELOPMENT OF METAL FUNCTIONALIZED HYDROXYAPATITE CATALYSTS FOR AIR-QUALITY PROTECTION

M.G. Galloni
2022

Abstract

A captivating challenge for environmental catalysis is nowadays the rational design of efficient catalysts able to take on the new challenges in energy, economy, and environment sustainability of industrial processes. A catalytic structure must be developed so as to be active, stable, resistant, when working in the presence of poisons (e.g., water, sulphur), but also easily to handle and manage, non-toxic, biocompatible and bioavailable in the view of environment sustainability and circular economy. In this scenario, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has emerged as bio-material characterized by interesting properties (e.g., thermal/chemical stability, low water solubility, modest morphological properties, and intrinsic amphotericity of surface), which make it a promising support for active metal phases (e.g., Cu, Fe, Mn, Sn), giving rise to heterogeneous catalysts for reactions of industrial chemistry and environment protection. The main scope of this Thesis under the joint supervision between Università degli Studi di Milano (Italy) and Université Claude Bernard Lyon 1 (France) is to develop eco-friendly HAP-based catalysts for environmental reactions devoted to the abatement of nitrogen-containing air pollutants (NOx, NH3, and N2O). During three years of work a commercial bare HAP, coming from the NOVOSOL® process (patented procedure by Solvay), has been at first characterized to assess its applicability as support for innovative eco-friendly catalysts for air-quality protection. The used hydroxyapatite was proven to be a mesoporous, crystalline material characterized by good thermal and chemical stability. Considering that HAP possesses a multifunctional surface, whose acid and basic sites may act as anchoring centres for the immobilization of metal species, it has been properly functionalized with selected metal species, in particular Cu(II) and/or Fe(III), from nitrate precursors in different amount (1 < wt.% Me < 13), according to a wet deposition procedure (contact time of 15 min, 24 h, or 48 h, T = 40°C, calcination at 500°C for 1 h), already reported in previous studies. In this way, different series of metal loaded HAP-catalysts (mono- and bi-metallic) have been obtained, varying some parameters (i.e., metal loading, pH of the Fe-precursor solution, and time of contact between the bare HAP support and the aqueous metal solution) during the preparation. Morphology, structure, acidity, metal speciation and sitting at the HAP surface have been studied through targeted physico-chemical techniques (e.g., N2-physisorption, XRPD, NH3-titration, UV-DR, Mӧssbauer, XP, and EXAFS spectroscopies, CO adsorption at -196°C followed by FT-IR, TEM-EDX) to elucidate the main bulk and surface properties. In general, a complex scenario emerged. The copper- and/or iron-introduction onto HAP did not cause evident modifications in the sample morphology, independently on the metal nature and loading. All the samples were described by mesoporosity and only minor microporosity: they were characterized by surface area values in 60-95 m2·g-1 interval, according to the N2 adsorption/desorption isotherms collected at -196°C. Concerning copper-HAP samples, UV-DRS results indicated that the copper-phase was present in highly dispersed and isolated ions/small nanoclusters onto HAP. However, when the Cu-concentration onto HAP was higher than 6 wt.%, copper-species additionally reacted with phosphate groups at the HAP surface, giving rise to a further Cu-containing crystalline phase (libethenite, JCPDS: 00-036-0404), revealed by XRPD and TEM-EDX. Regarding iron-HAP samples, UV-DRS, Mössbauer and XPS results indicated that both isolated and aggregated Fe-species were present on all the catalyst surfaces. Eventually, the bimetallic samples were characterized by a higher dispersion of metal species than the monometallic counterparts, as revealed by NH3-titrations, TEM-EDX, and XPS analyses. Three environmental reactions have been then selected to abate NOx, NH3, and N2O: NH3-SCR, Selective Catalytic Reduction of NOx by NH3, NH3-SCO, Selective Catalytic Oxidation of NH3, and the catalytic N2O-decomposition reaction. Catalytic tests have been performed in continuous reaction lines equipped with flow reactor and inline instruments (FT-IR and µ-GC) for quantitative analysis of fed/vented gaseous species. The catalytic performances have been studied under ideal and quasi-real feeding, also evaluating the time-on-stream stability, reusability and the resistance to some poisoning species (e.g., sulphur dioxide, alkaline species) of selected samples. Copper-HAP samples have been studied in the NH3-SCR and the N2O-decomposition reaction. The observed catalytic performances under ideal- and quasi-real feeding mixtures suggested that the SCR activity was driven by the Cu-dispersion, as reported for Cu-zeolites. However, the studied Cu-HAP samples were less active than conventional Cu-based systems, even if selectivity to the desired N2 higher than 93% was obtained in the whole temperature range studied. Considering that N2O could be obtained as the undesired by-product due to the unselective NH3 oxidation by O2 for temperatures higher than 400°C in the NH3-SCR, Cu-HAP samples have been additionally studied in the N2O decomposition reaction in the view of their potential use for reducing N2O emissions in post-treatment approaches. The obtained results indicated that Cu-HAP samples can be valid alternatives to some conventional catalytic systems because they require ca. 450°C to efficiently decompose N2O. Differently from what observed in the NH3-SCR, here the catalytic activity was governed by the Cu-Cu distance, according to the reaction mechanism known for Cu-zeolites. Indeed, the most active catalyst possessed dispersed copper-species together with small Cu-aggregates, providing the ideal active sites with the optimal Cu-Cu distance. Iron-HAP catalysts have been tested in the NH3-SCR, NH3-SCO, and N2O-decomposition reactions. They showed modest catalytic performances in the studied reactions, but they remained less active than commercial Fe-based systems. However, they have been studied to evaluate their potentialities for the abatement of gaseous pollutants among the worst of our environment. The obtained results indicated that the studied environmental reactions could be also performed in a single cascade process to achieve the desired zero-emissions goal. For the cascade process, the most promising catalyst among those studied is at an average concentration of Fe (about 6–9 wt.%), to guarantee a surface composed of isolated Fe3+ ions or oligonuclear species that ensure good activity with an equally good selectivity. Eventually, bimetallic copper iron-HAP catalysts have been studied in the NH3-SCR reaction. The obtained results indicated that they were active under both dry/wet feeding, even if they remained less active than conventional bimetallic zeolites. Their activity seemed to be governed by the total metal dispersion, even if, when the catalytic performances of the bimetallic samples were compared with those of the monometallic counterparts, no clear trend of activity was identified due to the fact that the metal-phase could experience different environment, if present alone onto HAP or copresent with another one. To cut a long story short, results obtained in this Thesis enlightened the potential use of hydroxyapatite as promising eco-friendly support for environmental reactions devoted to the abatement of nitrogen-containing air pollutants (NOx, NH3, and N2O). Even if the obtained copper and/or iron hydroxyapatite-based catalysts are not as performant as the commercial catalytic systems, it seems that the suitable route to obtain ever more active and effective HAP-based catalysts is the suitable control of the surface metal distribution onto HAP that is not an easy task. In this context, also in accordance with the positive effects of these innovative HAP-based catalysts on the environment, current investigations are ongoing to develop ever more effective sustainable catalysts for air-quality protection.
13-apr-2022
Aujourd'hui un défi captivant pour la catalyse environnementale est la conception rationnelle de catalyseurs efficaces capables de relever les nouveaux défis en matière de durabilité énergétique, économique et environnementale des procédés industriels. Une structure catalytique doit être développée de manière à être active, stable, résistante, lorsqu'on travaille en présence de poisons (ex. eau, soufre), mais aussi facilement manipulable et maniable, non toxique, biocompatible et biodisponible dans l'optique de durabilité de l'environnement et économie circulaire. Dans ce scénario, l'hydroxyapatite (HAP, Ca10(PO4)6(OH)2) est apparue comme un biomatériau caractérisé par des propriétés intéressantes (par exemple, stabilité thermique/chimique, faible solubilité dans l'eau, faibles propriétés morphologiques), qui en font un support prometteur pour les phases métalliques actives (ex. Cu, Fe, Mn, Sn), donnant naissance à des catalyseurs hétérogènes pour les réactions de chimie industrielle et de protection de l'environnement. Le principal objectif de cette thèse en cotutelle entre l'Università degli Studi di Milano (Italie) et l'Université Claude Bernard Lyon 1 (France) a été de développer des catalyseurs écologiques à base d’HAP pour les réactions environnementales consacrées à la réduction de polluants de l'air contenant de l'azote (NOx, NH3 et N2O). Pendant trois ans de travail, une HAP commerciale, issue du procédé NOVOSOL® (procédé breveté par Solvay), a d'abord été caractérisée pour évaluer son applicabilité comme support de catalyseurs innovants et respectueux de l'environnement pour la protection de la qualité de l'air. L'hydroxyapatite utilisée s'est avérée être un matériau cristallin et mésoporeux caractérisé par une bonne stabilité thermique et chimique. Considérant que l’HAP possède une surface multifonctionnelle, dont les sites acides et basiques peuvent servir de centre d'ancrage pour l'immobilisation d'espèces métalliques, elle a été correctement fonctionnalisée avec des espèces métalliques sélectionnées, en particulier Cu(II) et/ou Fe(III), à partir de précurseurs de nitrate en quantité différente (1 &lt; wt.% Me &lt; 13), selon une procédure de dépôt par voie humide (temps de contact de 15 min, 24 h ou 48 h, T = 40°C, calcination à 500°C pendant 1 h), déjà rapporté dans de précédentes études. De cette manière, différentes séries de catalyseurs à base d’HAP chargés en métal (mono- et bi-métalliques) ont été préparés, en faisant varier les paramètres suivants: charge en métal, pH de la solution de fer, temps de contact entre le support HAP et la solution précurseur métallique. La morphologie, la structure, l'acidité, la spéciation des métaux et la fonctionalisation à la surface du HAP ont été étudiées par les techniques physico-chimiques suivantes: physisorption d’N2, XRPD, titrage par NH3, spectroscopies UV-DR, Mӧssbauer, XP et EXAFS, adsorption de CO à -196°C suivi par FT-IR et TEM-EDX afin de relier les performances catalytiques aux propriétés texturales, structurales et chimiques des solides préparés. De manière générale, les résultats montrent que l'introduction de cuivre et/ou de fer sur l’HAP ne provoque pas de modifications majeures dans la morphologie des échantillons, indépendamment de la nature du métal et de la charge. Tous les échantillons présentent des isothermes de type mésoporeux avec la présence au début de l’isotherme d’un faible volume microporeux. Les surfaces spécifiques calculées à partir du modèle BET varient entre 60 et 95 m2·g-1. En ce qui concerne les échantillons de cuivre-HAP, les résultats UV-DRS montrent que la phase de cuivre est présente sous de nanoclusters ioniques très bien dispersés et isolés sur l’HAP. Cependant, lorsque la masse de Cu sur l’HAP est supérieure à 6 %, les espèces de cuivre réagisse également avec les groupes phosphate de surface, donnant naissance à une autre phase cristalline contenant du Cu (libethenite, JCPDS: 00-036-0404), détectée par XRPD et TEM-EDX. En ce qui concerne les échantillons de Fe-HAP, les résultats UV-DRS, Mössbauer et XPS montrent que des espèces de Fe isolées et agrégées sont présentes à la surface des catalyseurs. Concernant la caractérisation des systèmes bimétalliques, les résultats montrent une dispersion plus élevée des espèces métalliques que sur les systèmes monométalliques, confirmé par des titrages par NH3 et les analyses TEM-EDX et XPS. Trois réactions environnementales ont ensuite été sélectionnées pour réduire les NOx, NH3 et N2O: la réduction catalytique sélective des NOx par NH3 (NH3-SCR), l’oxydation catalytique sélective d’NH3 (NH3-SCO), et la réaction de décomposition catalytique de l’N2O. Les tests catalytiques ont été effectués en réacteur continu équipé d'un réacteur à lit fixe et d'outils analytiques en ligne (FT-IR et µ-GC) pour l'analyse quantitative des espèces gazeuses alimentées/éventées. Les performances catalytiques ont été étudiées dans des conditions d'alimentation modéles et/ou quasi-réelles, évaluant également la stabilité, la réutilisabilité et la résistance à certaines espèces empoisonnantes (par exemple, le dioxyde de soufre, les espèces alcalines) des échantillons sélectionnés. Les échantillons de cuivre-HAP ont été étudiés dans la NH3-SCR et la réaction de décomposition de l’N2O. Les performances catalytiques observées montrent que l'activité SCR est sensible à la dispersion de Cu, comme indiqué pour les zéolithes de Cu. Cependant, les échantillons de Cu-HAP étudiés se sont révélés moins actifs que les échantillons à base de Cu conventionnels, même si une sélectivité en N2 supérieure à 93% a été obtenue dans toute la gamme de température étudiée. Considérant que le protoxyde d’azote (N2O) peut être formé en tant que sous-produit indésirable en raison de l'oxydation non sélective du NH3 par l'O2 pour des températures supérieures à 400 °C dans la NH3-SCR, des échantillons de Cu-HAP ont également été étudiés dans la réaction de décomposition de N2O en vue de leur utilisation potentielle pour prévenir la formation de N2O dans les systèmes de post-traitement. Les résultats obtenus ont indiqué que les échantillons de Cu-HAP peuvent être des alternatives valables à certains systèmes catalytiques conventionnels car ils nécessitent env. 450°C pour décomposer efficacement N2O. Contrairement à ce qui a été observé dans la NH3-SCR, ici l'activité catalytique était régie par la distance entre deux atomes de cuivre (Cu-Cu), selon le mécanisme de réaction connu pour les zéolithes Cu.8 En effet, le catalyseur le plus actif posséde des espèces de cuivre dispersées avec de petites quantités de Cu agrégées, qui permet d’obtenir une optimisation de la distance Cu-Cu. Les catalyseurs Fe-HAP ont été testés dans les réactions de NH3-SCR, de NH3-SCO et de décomposition d’N2O. Ils ont montré des performances catalytiques modestes dans les réactions étudiées, mais ils sont restés moins actifs que les systèmes commerciaux à base de Fe. Cependant, ils ont été étudiés pour évaluer leurs potentialités pour l'abattement des polluants gazeux parmi les pires de notre environnement. Les résultats obtenus ont indiqué que les réactions environnementales étudiées pouvaient également être effectuées dans un processus en cascade unique pour atteindre l'objectif de zéro émissions. Pour le procédé en cascade, le catalyseur le plus prometteur parmi ceux étudiés présente une concentration moyenne en Fe d’environ 6 à 9 % en poids, générant une surface composée d’ions Fe3+ isolés et d'espèces oligonucléaires assurant une bonne activité et une excellente sélectivité. Finalement, les catalyseurs bimétalliques Cu-Fe-HAP ont été testés dans la réaction de NH3-SCR. Les résultats obtenus indiquent qu'ils sont actifs en absence et en présence de vapeur d’eau dans le milieu réactionnel, même si ils restent moins actifs que les zéolithes bimétalliques conventionnelles. Leur activité semble être gouvernée par la dispersion métallique totale, même si, lorsque les performances catalytiques des échantillons bimétalliques ont été comparés à ceux des homologues monométalliques, aucune tendance claire de l'activité n'a été identifiée en raison du fait que la phase métallique présente un environnement différent (monométallique ou bimétallique). Les résultats obtenus dans ce travail de thèse ont permis de valider le potentiel de l’hydroxyapatite en tant que support écologique prometteur pour les applications dans le domaine de la chimie environnementale et notamment le cas de la réduction des polluants atmosphériques contenant de l'azote (NOx, NH3 et N2O). Même si les catalyseurs à base d'hydroxyapatite de cuivre et/ou de fer obtenus ne sont pas aussi performants que les systèmes catalytiques commerciaux, il semble que la voie appropriée pour obtenir des catalyseurs à base d’HAP toujours plus actifs et efficaces requiert un contrôle précis de la distribution des métaux en surface. Ce n'est pas une tâche facile. Dans ce contexte, également en accord avec les effets positifs de ces catalyseurs innovants à base d’HAP sur l'environnement, des recherches sont en cours pour développer des catalyseurs durables toujours plus efficaces pour la protection de la qualité de l'air.
Settore CHIM/02 - Chimica Fisica
hydroxyapatite; denitrification processes; eco-friendly support; zero-emissions; environment protection ;
GERVASINI, ANTONELLA
GERVASINI, ANTONELLA
ROBERTO, DOMINIQUE MARIE
Doctoral Thesis
DEVELOPMENT OF METAL FUNCTIONALIZED HYDROXYAPATITE CATALYSTS FOR AIR-QUALITY PROTECTION / M.g. Galloni ; supervisor: A. GERVASINI ; co-supervisor: A. GIROIR-FENDLER ; coordinator: D. M. ROBERTO. Dipartimento di Chimica, 2022 Apr 13. 34. ciclo, Anno Accademico 2021.
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12407.pdf

accesso aperto

Descrizione: tesi di dottorato completa
Tipologia: Tesi di dottorato completa
Dimensione 21.81 MB
Formato Adobe PDF
21.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/920030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact