Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, “ghost” mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.
Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability / J.C. Ghosh, M. Perego, E. Agarwal, I. Bertolini, Y. Wang, A.R. Goldman, H.-. Tang, A.V. Kossenkov, C.J. Libby, L.R. Languino, E.F. Plow, A. Morotti, L. Ottobrini, M. Locatelli, D.W. Speicher, M.C. Caino, J. Cassel, J.M. Salvino, M.E. Robert, V. Vaira, D.C. Altieri. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 119:8(2022 Feb 22), pp. e2115624119.1-e2115624119.9. [10.1073/pnas.2115624119]
Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability
I. Bertolini;A. Morotti;L. Ottobrini;M. Locatelli;V. VairaPenultimo
;
2022
Abstract
Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, “ghost” mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.File | Dimensione | Formato | |
---|---|---|---|
Ghost mitochondria 2022.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.