We prove that two Enriques surfaces defined over an algebraically closed field of characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent. This improves and completes our previous result joint with Nuer where the same statement is proved for generic Enriques surfaces.

A refined derived Torelli theorem for enriques surfaces, II: the non-generic case / C. Li, P. Stellari, X. Zhao. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 300:4(2022 Apr), pp. 3527-3550. [10.1007/s00209-021-02930-4]

A refined derived Torelli theorem for enriques surfaces, II: the non-generic case

P. Stellari
Secondo
;
2022

Abstract

We prove that two Enriques surfaces defined over an algebraically closed field of characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent. This improves and completes our previous result joint with Nuer where the same statement is proved for generic Enriques surfaces.
English
Enriques surfaces; Derived categories; Torelli theorem;
Settore MAT/03 - Geometria
Articolo
Esperti anonimi
Pubblicazione scientifica
   Moduli and Lie Theory
   HighCaSt
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017YRA3LK_004

   Higher categorical and stability structures in algebraic geometry (HighCaSt)
   StabCondEn
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   R18YA3ESPJ

   Stability Conditions, Moduli Spaces and Enhencements (StabCondEn)
   StabCondEn
   EUROPEAN COMMISSION
   H2020
   771507
apr-2022
21-gen-2022
Springer
300
4
3527
3550
24
Pubblicato
Periodico con rilevanza internazionale
manual
Aderisco
info:eu-repo/semantics/article
A refined derived Torelli theorem for enriques surfaces, II: the non-generic case / C. Li, P. Stellari, X. Zhao. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 300:4(2022 Apr), pp. 3527-3550. [10.1007/s00209-021-02930-4]
open
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
no
C. Li, P. Stellari, X. Zhao
File in questo prodotto:
File Dimensione Formato  
TorelliEnriques2MathZ.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 451.26 kB
Formato Adobe PDF
451.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/916921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact