BACKGROUND: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease. METHODS: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes. RESULTS: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd-/- mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs. CONCLUSIONS: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.

Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium / M. Sainz-Jaspeado, R.O. Smith, O. Plunde, S.-. Pawelzik, Y. Jin, S. Nordling, Y. Ding, P. Aspenstrom, M. Hedlund, G. Bastianello, F. Ascione, Q. Li, C.S. Demir, D. Fernando, G. Daniel, A. Franco-Cereceda, J. Kroon, M. Foiani, T.V. Petrova, M.W. Kilimann, M. Back, L. Claesson-Welsh. - In: CIRCULATION. - ISSN 1524-4539. - 144:20(2021 Nov), pp. 1629-1645. [10.1161/CIRCULATIONAHA.121.054182]

Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium

G. Bastianello;M. Foiani;
2021

Abstract

BACKGROUND: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease. METHODS: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes. RESULTS: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd-/- mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs. CONCLUSIONS: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.
English
aortic valve stenosis; endothelial cells; nucleocytoplasmic transport; palmdelphin
Settore BIO/11 - Biologia Molecolare
Articolo
Sì, ma tipo non specificato
Pubblicazione scientifica
Goal 3: Good health and well-being
nov-2021
Wolters Kluwer Health, Inc.
144
20
1629
1645
17
Pubblicato
Periodico con rilevanza internazionale
scopus
pubmed
crossref
wos
datacite
Aderisco
info:eu-repo/semantics/article
Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium / M. Sainz-Jaspeado, R.O. Smith, O. Plunde, S.-. Pawelzik, Y. Jin, S. Nordling, Y. Ding, P. Aspenstrom, M. Hedlund, G. Bastianello, F. Ascione, Q. Li, C.S. Demir, D. Fernando, G. Daniel, A. Franco-Cereceda, J. Kroon, M. Foiani, T.V. Petrova, M.W. Kilimann, M. Back, L. Claesson-Welsh. - In: CIRCULATION. - ISSN 1524-4539. - 144:20(2021 Nov), pp. 1629-1645. [10.1161/CIRCULATIONAHA.121.054182]
open
Prodotti della ricerca::01 - Articolo su periodico
22
262
Article (author)
Periodico con Impact Factor
M. Sainz-Jaspeado, R.O. Smith, O. Plunde, S.-. Pawelzik, Y. Jin, S. Nordling, Y. Ding, P. Aspenstrom, M. Hedlund, G. Bastianello, F. Ascione, Q. Li, C...espandi
File in questo prodotto:
File Dimensione Formato  
sáinz-jaspeado-et-al-2021-palmdelphin-regulates-nuclear-resilience-to-mechanical-stress-in-the-endothelium.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/915377
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact