Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-α (TNFα). Autocrine/paracrine TNFα-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.

CXCR4-activated astrocytes glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity / P. Bezzi, M. Domercq, L. Brambilla, R. Galli, D. Schols, E. DeClercq, A. Vescovi, G. Bagetta, G. Kollias, J. Meldolesi, A. Volterra. - In: NATURE NEUROSCIENCE. - ISSN 1097-6256. - 4:7(2001 Jul), pp. 702-710.

CXCR4-activated astrocytes glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity

L. Brambilla;A. Volterra
2001

Abstract

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-α (TNFα). Autocrine/paracrine TNFα-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.
Settore BIO/14 - Farmacologia
lug-2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/9091
Citazioni
  • ???jsp.display-item.citation.pmc??? 340
  • Scopus 929
  • ???jsp.display-item.citation.isi??? 862
social impact