This study utilizes synchrotron X-ray micro-tomography and pore scale modeling to investigate the process of gas exsolution and how it affects non-wetting phase relative permeability. Exsolved gas distributions are measured on Domengine and Boise sandstone samples using synchrotron X-ray micro-tomography. Observed gas phase distributions are compared to a new model that simulates the growth and distribution of exsolved gas phase at the pore-scale. Water relative permeability curves are calculated using a Stokes flow simulator with modeled and observed gas distributions, under various conditions, such as rock geometry, and pressure depletion rates. By comparing the actual bubble distributions with modeled distributions, we conclude that exsolved gas is more likely to form and accumulate at locations with higher water velocities. This suggests that convective delivery of CO2 to the gas bubble is a primary mechanism for bubble growth, as compared to diffusive transport through the aqueous phase. For carbonated brine flowing up a fault at half a meter per day, with 5% exsolved gas, the water relative permeability is estimated to be 0.6∼0.8 for various sandstones. The reduction of water mobility reduces upward brine migration when even a small amount of exsolution occurs.

Pore-scale multiphase flow modeling and imaging of CO2 exsolution in Sandstone / L. Zuo, J.B. Ajo-Franklin, M. Voltolini, J.T. Geller, S.M. Benson. - In: JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING. - ISSN 0920-4105. - 155:(2017), pp. 63-77. [10.1016/j.petrol.2016.10.011]

Pore-scale multiphase flow modeling and imaging of CO2 exsolution in Sandstone

M. Voltolini;
2017

Abstract

This study utilizes synchrotron X-ray micro-tomography and pore scale modeling to investigate the process of gas exsolution and how it affects non-wetting phase relative permeability. Exsolved gas distributions are measured on Domengine and Boise sandstone samples using synchrotron X-ray micro-tomography. Observed gas phase distributions are compared to a new model that simulates the growth and distribution of exsolved gas phase at the pore-scale. Water relative permeability curves are calculated using a Stokes flow simulator with modeled and observed gas distributions, under various conditions, such as rock geometry, and pressure depletion rates. By comparing the actual bubble distributions with modeled distributions, we conclude that exsolved gas is more likely to form and accumulate at locations with higher water velocities. This suggests that convective delivery of CO2 to the gas bubble is a primary mechanism for bubble growth, as compared to diffusive transport through the aqueous phase. For carbonated brine flowing up a fault at half a meter per day, with 5% exsolved gas, the water relative permeability is estimated to be 0.6∼0.8 for various sandstones. The reduction of water mobility reduces upward brine migration when even a small amount of exsolution occurs.
CO2 exsolution; Pore-scale Stokes flow; Relative permeability; Water mobility reduction
Settore GEO/06 - Mineralogia
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0920410516305782-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/908416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact