We present strategies for the training of a qubit network aimed at the ancilla-assisted synthesis of multi-qubit gates based on a set of restricted resources. By assuming the availability of only time-independent single and two-qubit interactions, we introduce and describe a supervised learning strategy implemented through momentum-stochastic gradient descent with automatic differentiation methods. We demonstrate the effectiveness of the scheme by discussing the implementation of nontrivial three qubit operations, including a QFT and a half-adder gate.

Approximate supervised learning of quantum gates via ancillary qubits / L. Innocenti, L. Banchi, S. Bose, A. Ferraro, M. Paternostro. - In: INTERNATIONAL JOURNAL OF QUANTUM INFORMATION. - ISSN 0219-7499. - 16:8(2018 Dec), pp. 1840004.1-1840004.15. [10.1142/S021974991840004X]

Approximate supervised learning of quantum gates via ancillary qubits

A. Ferraro
Penultimo
;
2018

Abstract

We present strategies for the training of a qubit network aimed at the ancilla-assisted synthesis of multi-qubit gates based on a set of restricted resources. By assuming the availability of only time-independent single and two-qubit interactions, we introduce and describe a supervised learning strategy implemented through momentum-stochastic gradient descent with automatic differentiation methods. We demonstrate the effectiveness of the scheme by discussing the implementation of nontrivial three qubit operations, including a QFT and a half-adder gate.
quantum-computation; quantum-gates; quantum-information;
Settore FIS/03 - Fisica della Materia
dic-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
verona_QGL_IJQJ.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
s021974991840004x.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 976.51 kB
Formato Adobe PDF
976.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/907770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact