Background: Acute intermittent porphyria (AIP) is caused by haploinsufficiency of porphobilin-ogen deaminase (PBGD) enzymatic activity. Acute attacks occur in response to fasting and altera-tions in glucose metabolism, insulin resistance and mitochondrial turnover may be involved in AIP pathophysiology. Therefore, we investigated the metabolic pathways in PBGD-silenced hepatocytes and assessed the efficacy of an insulin-mimic, the α-lipoic acid (α-LA) as a potential therapeutic strategy. Methods: HepG2 cells were transfected with a siRNA targeting PBGD (siPBGD). Cells were cul-tured with low glucose concentration to mimic fasting and exposed to α-LA alone or with glu-cose. Results: At baseline, siPBGD cells showed lower expression of genes involved in glycolysis and mitochondrial dynamics along with reduced total ATP levels. Fasting further unbalanced gly-colysis by inducing ATP shortage in siPBGD cells and activated DRP1, which mediates mito-chondrial separation. Consistently, siPBGD cells in fasted state showed the lowest protein levels of Complex IV which belong to the oxidative phosphorylation (OXPHOS) machinery. α-LA up-regulated glycolysis and prompted ATP synthesis and triglyceride secretion, thus possibly providing energy fuels to siPBGD cells by improving glucose utilization. Finally, siPBGD exposed to α-LA plus glucose raised mitochondrial dynamics, OXPHOS activity and energy production. Conclusions: α-LA-based therapy may ameliorate glucose metabolism and mitochondrial dys-functions in siPBGD hepatocytes. Keywords: AIP, PBGD, glucose metabolism, mitobiogenesis, α-lipoic acid

The α-Lipoic Acid Improves Hepatic Metabolic Dysfunctions in Acute Intermittent Porphyria: A Proof-of-Concept Study / M. Longo, E. Paolini, M. Meroni, L. Duca, I. Motta, A.L. Fracanzani, E. Di Pierro, P. Dongiovanni. - (2021 Aug 04). [10.20944/preprints202108.0117.v1]

The α-Lipoic Acid Improves Hepatic Metabolic Dysfunctions in Acute Intermittent Porphyria: A Proof-of-Concept Study

M. Longo
Primo
;
E. Paolini
Secondo
;
M. Meroni;L. Duca;I. Motta;A.L. Fracanzani;E. DI PIERRO
Penultimo
;
P. Dongiovanni
Ultimo
2021-08-04

Abstract

Background: Acute intermittent porphyria (AIP) is caused by haploinsufficiency of porphobilin-ogen deaminase (PBGD) enzymatic activity. Acute attacks occur in response to fasting and altera-tions in glucose metabolism, insulin resistance and mitochondrial turnover may be involved in AIP pathophysiology. Therefore, we investigated the metabolic pathways in PBGD-silenced hepatocytes and assessed the efficacy of an insulin-mimic, the α-lipoic acid (α-LA) as a potential therapeutic strategy. Methods: HepG2 cells were transfected with a siRNA targeting PBGD (siPBGD). Cells were cul-tured with low glucose concentration to mimic fasting and exposed to α-LA alone or with glu-cose. Results: At baseline, siPBGD cells showed lower expression of genes involved in glycolysis and mitochondrial dynamics along with reduced total ATP levels. Fasting further unbalanced gly-colysis by inducing ATP shortage in siPBGD cells and activated DRP1, which mediates mito-chondrial separation. Consistently, siPBGD cells in fasted state showed the lowest protein levels of Complex IV which belong to the oxidative phosphorylation (OXPHOS) machinery. α-LA up-regulated glycolysis and prompted ATP synthesis and triglyceride secretion, thus possibly providing energy fuels to siPBGD cells by improving glucose utilization. Finally, siPBGD exposed to α-LA plus glucose raised mitochondrial dynamics, OXPHOS activity and energy production. Conclusions: α-LA-based therapy may ameliorate glucose metabolism and mitochondrial dys-functions in siPBGD hepatocytes. Keywords: AIP, PBGD, glucose metabolism, mitobiogenesis, α-lipoic acid
AIP; PBGD; glucose metabolism; mitobiogenesis; alpha-lipoic acid;
Settore BIO/18 - Genetica
https://www.preprints.org/manuscript/202108.0117/v1
File in questo prodotto:
File Dimensione Formato  
preprints202108.0117.v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/906438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact