Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole-nesting species with differing sensitivities to climate that show a range of well-understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N-mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate-sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.

Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild / M. Brambilla, D. Scridel, G. Bazzi, L. Ilahiane, A. Iemma, P. Pedrini, E. Bassi, R. Bionda, L. Marchesi, F. Genero, N. Teufelbauer, R. Probst, A. Vrezec, P. Kmecl, T. Mihelic, G. Bogliani, H. Schmid, G. Assandri, R. Pontarini, V. Braunisch, R. Arlettaz, D. Chamberlain. - In: GLOBAL CHANGE BIOLOGY. - ISSN 1354-1013. - 26:3(2020 Mar), pp. 1212-1224. [10.1111/gcb.14953]

Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild

M. Brambilla
Primo
;
G. Bazzi;L. Ilahiane;
2020

Abstract

Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole-nesting species with differing sensitivities to climate that show a range of well-understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N-mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate-sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.
biotic interactions; citizen science; global warming; owls; SDM; woodpeckers; Animals; Ecosystem; Forests; Predatory Behavior; Climate Change; Strigiformes
Settore BIO/07 - Ecologia
mar-2020
gen-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
interacting_guild_03Dec19_postprint.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 298.38 kB
Formato Adobe PDF
298.38 kB Adobe PDF Visualizza/Apri
Global Change Biology - 2019 - Brambilla - Species interactions and climate change How the disruption of species.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/906218
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact