Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by ‘stemness’ gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the ‘wobbling Penrose’ landscape. Here, totipotent ASCs adopt ascending/descending courses of an ‘Escherian stairwell’, in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.

A pan-metazoan concept for adult stem cells : the wobbling Penrose landscape / B. Rinkevich, L. Ballarin, P. Martinez, I. Somorjai, O. Ben-Hamo, I. Borisenko, E. Berezikov, A. Ereskovsky, E. Gazave, D. Khnykin, L. Manni, O. Petukhova, A. Rosner, E. Rottinger, A. Spagnuolo, M. Sugni, S. Tiozzo, B. Hobmayer. - In: BIOLOGICAL REVIEWS. - ISSN 1464-7931. - 97:1(2022 Feb), pp. 299-325. [10.1111/brv.12801]

A pan-metazoan concept for adult stem cells : the wobbling Penrose landscape

M. Sugni;
2022

Abstract

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by ‘stemness’ gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the ‘wobbling Penrose’ landscape. Here, totipotent ASCs adopt ascending/descending courses of an ‘Escherian stairwell’, in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Waddington landscape; adult stem cells; asexual reproduction; cell lineages; gene expression; germ cells; marine invertebrates; niche; regeneration; totipotency
Settore BIO/05 - Zoologia
feb-2022
6-ott-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rinkevich et al 2022 Biological Reviews.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/905723
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact