An erbium-doped silicon transistor prepared by ion implantation and co-doped with oxygen is investigated by photocurrent generation in the telecommunication range. The photocurrent is explored at room temperature as a function of the wavelength by using a supercontinuum laser source working in the µW range. The 1-µm 2 transistor is tuned to involve in the transport only those electrons lying in the Er-O states. The spectrally resolved photocurrent is characterized by the typical absorption line of erbium and the linear dependence of the signal over the impinging power demonstrates that the Er-doped transistor is operating far from saturation. The relatively small number of estimated photoexcited atoms (≈4 × 10 4 ) makes Er-dpoed silicon potentially suitable for designing resonance-based frequency selective single photon detectors at 1550 nm.
Room Temperature Resonant Photocurrent in an Erbium Low-Doped Silicon Transistor at Telecom Wavelength / M. Celebrano, L. Ghirardini, M. Finazzi, G. Ferrari, Y. Chiba, A. Abdelghafar, M. Yano, T. Shinada, T. Tanii, E. Prati. - In: NANOMATERIALS. - ISSN 2079-4991. - 9:3(2019), pp. 416.1-416.8. [10.3390/nano9030416]
Room Temperature Resonant Photocurrent in an Erbium Low-Doped Silicon Transistor at Telecom Wavelength
E. Prati
Ultimo
2019
Abstract
An erbium-doped silicon transistor prepared by ion implantation and co-doped with oxygen is investigated by photocurrent generation in the telecommunication range. The photocurrent is explored at room temperature as a function of the wavelength by using a supercontinuum laser source working in the µW range. The 1-µm 2 transistor is tuned to involve in the transport only those electrons lying in the Er-O states. The spectrally resolved photocurrent is characterized by the typical absorption line of erbium and the linear dependence of the signal over the impinging power demonstrates that the Er-doped transistor is operating far from saturation. The relatively small number of estimated photoexcited atoms (≈4 × 10 4 ) makes Er-dpoed silicon potentially suitable for designing resonance-based frequency selective single photon detectors at 1550 nm.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019-NM-CelebranoPrati.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




