We present a time-dependent SIRD model for the spread of COVID-19 infection at a provincial (i.e.EUNUTS-3) level in Italy, using official data from the Italian Ministry of Health, integrated with data extracted from daily official press conferences of regional authorities and from local newspaper websites. This integration concerns COVID-19 death data which are not available at NUTS-3 level from open official data channels.The model is trained for improved forecasting performance with similarity techniques putting together data from time series most similar to that for which the forecast is performed.

A Heavily Trained Time-Dependent SIRD Model for Local Covid-19 Data in Italy / L. Ferrari, G. Gerardi, G. Manzi, A. Micheletti, F. Nicolussi, E. Biganzoli, S. Salini - In: Proceedings of the COVid-19 Empirical Research (COVER) Conference / [a cura di] E. Biganzoli, G. Manzi, A. Micheletti, F. Nicolussi, S. Salini. - Milano : Milano University Press, 2022 Feb. - ISBN 9791280325457. - pp. 19-24 (( convegno COVid-19 Empirical Research (COVER) tenutosi a Milano nel 2020 [10.54103/milanoup.73.41].

A Heavily Trained Time-Dependent SIRD Model for Local Covid-19 Data in Italy

G. Gerardi
Secondo
;
G. Manzi
;
A. Micheletti;F. Nicolussi;E. Biganzoli
Penultimo
;
S. Salini
Ultimo
2022

Abstract

We present a time-dependent SIRD model for the spread of COVID-19 infection at a provincial (i.e.EUNUTS-3) level in Italy, using official data from the Italian Ministry of Health, integrated with data extracted from daily official press conferences of regional authorities and from local newspaper websites. This integration concerns COVID-19 death data which are not available at NUTS-3 level from open official data channels.The model is trained for improved forecasting performance with similarity techniques putting together data from time series most similar to that for which the forecast is performed.
Settore SECS-S/01 - Statistica
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MED/01 - Statistica Medica
feb-2022
https://libri.unimi.it/index.php/milanoup/proceedings
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
73-Capitolo di volume-643-1-10-20220131.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 6.76 MB
Formato Adobe PDF
6.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/905343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact