Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.

Antigenic variation of SARS-CoV-2 in response to immune pressure / D. Forni, R. Cagliani, C. Pontremoli, A. Mozzi, U. Pozzoli, M. Clerici, M. Sironi. - In: MOLECULAR ECOLOGY. - ISSN 0962-1083. - 30:14(2021 Jul), pp. 3548-3559. [10.1111/mec.15730]

Antigenic variation of SARS-CoV-2 in response to immune pressure

D. Forni
Primo
;
R. Cagliani
Secondo
;
C. Pontremoli;M. Clerici
Penultimo
;
2021

Abstract

Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
B cell epitope; COVID-19; human coronavirus; sarbecovirus; SARS-CoV-2; T cell epitope
Settore MED/04 - Patologia Generale
Settore BIO/18 - Genetica
lug-2021
dic-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Molecular Ecology - 2020 - Forni - Antigenic variation of SARS%E2%80%90CoV%E2%80%902 in response to immune pressure.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 740.67 kB
Formato Adobe PDF
740.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/905241
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact