In this paper we construct a non-autonomous version of the Hietarinta equation [Hietarinta J., J. Phys. A: Math. Gen. 37 (2004), L67-L73] and study its integrability properties. We show that this equation possess linear growth of the degrees of iterates, generalized symmetries depending on arbitrary functions, and that it is Darboux integrable. We use the first integrals to provide a general solution of this equation. In particular we show that this equation is a sub-case of the non-autonomous QV equation, and we provide a nonautonomous Möbius transformation to another equation found in [Hietarinta J., J. Nonlinear Math. Phys. 12 (2005), suppl. 2, 223-230] and appearing also in Boll’s classification [Boll R., Ph.D. Thesis, Technische Universität Berlin, 2012].

Reconstructing a lattice equation : A non-autonomous approach to the hietarinta equation / G. Gubbiotti, C. Scimiterna. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 14(2018), pp. 004.1-004.21. [10.3842/SIGMA.2018.004]

Reconstructing a lattice equation : A non-autonomous approach to the hietarinta equation

G. Gubbiotti
Primo
;
2018

Abstract

In this paper we construct a non-autonomous version of the Hietarinta equation [Hietarinta J., J. Phys. A: Math. Gen. 37 (2004), L67-L73] and study its integrability properties. We show that this equation possess linear growth of the degrees of iterates, generalized symmetries depending on arbitrary functions, and that it is Darboux integrable. We use the first integrals to provide a general solution of this equation. In particular we show that this equation is a sub-case of the non-autonomous QV equation, and we provide a nonautonomous Möbius transformation to another equation found in [Hietarinta J., J. Nonlinear Math. Phys. 12 (2005), suppl. 2, 223-230] and appearing also in Boll’s classification [Boll R., Ph.D. Thesis, Technische Universität Berlin, 2012].
Algebraic entropy; Darboux integrability; Exact solutions; Generalized symmetries; Quad-equations
Settore MAT/07 - Fisica Matematica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
GubScimSIGMA2018.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 486.07 kB
Formato Adobe PDF
486.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/904486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact