In this Letter a first-order Lagrangian for the SchrödingerNewton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 48444877]. Then Noether's theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the SchrödingerNewton equations, Nonlinearity 19(7) (2006) 15071514] in order to find conservation laws of the SchrödingerNewton equations. © G. Gubbiotti and M. C. Nucci.

Conservation laws for the Schrödinger-Newton equations / G. Gubbiotti, M.C. Nucci. - In: JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS. - ISSN 1402-9251. - 19:3(2012 Sep), pp. 1220002.292-1220002.299. [10.1142/S1402925112200021]

Conservation laws for the Schrödinger-Newton equations

G. Gubbiotti
Primo
;
2012

Abstract

In this Letter a first-order Lagrangian for the SchrödingerNewton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 48444877]. Then Noether's theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the SchrödingerNewton equations, Nonlinearity 19(7) (2006) 15071514] in order to find conservation laws of the SchrödingerNewton equations. © G. Gubbiotti and M. C. Nucci.
Calculus of variations; Noether's theorem; SchrödingerNewton equations
Settore MAT/07 - Fisica Matematica
set-2012
https://www.atlantis-press.com/journals/jnmp/125950916
Article (author)
File in questo prodotto:
File Dimensione Formato  
125950916.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/904283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact