We present an analytical derivation of the volume fractions for random close packing (RCP) in both d=3 and d=2, based on the same methodology. Using suitably modified nearest neighbor statistics for hard spheres, we obtain ϕ_{RCP}=0.658 96 in d=3 and ϕ_{RCP}=0.886 48 in d=2. These values are well within the interval of values reported in the literature using different methods (experiments and numerical simulations) and protocols. This statistical derivation suggests some considerations related to the nature of RCP: (i) RCP corresponds to the onset of mechanical rigidity where the finite shear modulus emerges, (ii) the onset of mechanical rigidity marks the maximally random jammed state and dictates ϕ_{RCP} via the coordination number z, (iii) disordered packings with ϕ>ϕ_{RCP} are possible at the expense of creating some order, and z=12 at the fcc limit acts as a boundary condition.

Explicit Analytical Solution for Random Close Packing in d=2 and d=3 / A. Zaccone. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 128:2(2022 Jan 12), pp. 028002.028002-1-028002.028002-5. [10.1103/PhysRevLett.128.028002]

Explicit Analytical Solution for Random Close Packing in d=2 and d=3

A. Zaccone
2022-01-12

Abstract

We present an analytical derivation of the volume fractions for random close packing (RCP) in both d=3 and d=2, based on the same methodology. Using suitably modified nearest neighbor statistics for hard spheres, we obtain ϕ_{RCP}=0.658 96 in d=3 and ϕ_{RCP}=0.886 48 in d=2. These values are well within the interval of values reported in the literature using different methods (experiments and numerical simulations) and protocols. This statistical derivation suggests some considerations related to the nature of RCP: (i) RCP corresponds to the onset of mechanical rigidity where the finite shear modulus emerges, (ii) the onset of mechanical rigidity marks the maximally random jammed state and dictates ϕ_{RCP} via the coordination number z, (iii) disordered packings with ϕ>ϕ_{RCP} are possible at the expense of creating some order, and z=12 at the fcc limit acts as a boundary condition.
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/03 - Fisica della Materia
Article (author)
File in questo prodotto:
File Dimensione Formato  
ArXiv.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 248.96 kB
Formato Adobe PDF
248.96 kB Adobe PDF Visualizza/Apri
PhysRevLett.128.028002.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 161.04 kB
Formato Adobe PDF
161.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/904044
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact