A conjecture of Perrin-Riou relating Heegner cycles to Beilinson-Kato elements is proved, by relating both objects to p-adic families of Beilinson-Flach elements in the higher Chow groups of products of two modular curves.

Heegner points and Beilinson–Kato elements: A conjecture of Perrin-Riou / M. Bertolini, H. Darmon, R. Venerucci. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 398:(2022 Mar 26), pp. 108172.1-108172.50. [10.1016/j.aim.2021.108172]

Heegner points and Beilinson–Kato elements: A conjecture of Perrin-Riou

M. Bertolini
Primo
;
R. Venerucci
Ultimo
2022

Abstract

A conjecture of Perrin-Riou relating Heegner cycles to Beilinson-Kato elements is proved, by relating both objects to p-adic families of Beilinson-Flach elements in the higher Chow groups of products of two modular curves.
Elliptic curves; Heegner points; Euler systems; Perrin-Riou;
Settore MAT/02 - Algebra
26-mar-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870821006113-main.pdf

solo utenti autorizzati

Tipologia: Publisher's version/PDF
Dimensione 847.88 kB
Formato Adobe PDF
847.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/903668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact