We present an approach for indexing encrypted data stored at external providers to enable provider-side evaluation of queries. Our approach supports the evaluation of point and range conditions on multiple attributes. Protection against inferences from indexes is guaranteed by clustering tuples in boxes that are then mapped to the same index values, so to ensure collisions for individual attributes as well as their combinations. Our spatial-based algorithm partitions tuples to produce such a clustering in a way to ensure efficient query execution. Query translation and processing require the client to store a compact map. The experiments, evaluating query performance and client-storage requirements, confirm the efficiency enjoyed by our solution.

Multi-dimensional indexes for point and range queries on outsourced encrypted data / S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, P. Samarati - In: 2021 IEEE Global Communications Conference (GLOBECOM)[s.l] : IEEE, 2021. - ISBN 978-1-7281-8104-2. - pp. 1-6 (( convegno EEE Global Communications Conference tenutosi a Madrid nel 2021 [10.1109/GLOBECOM46510.2021.9685186].

Multi-dimensional indexes for point and range queries on outsourced encrypted data

S. De Capitani di Vimercati;S. Foresti;P. Samarati
2021

Abstract

We present an approach for indexing encrypted data stored at external providers to enable provider-side evaluation of queries. Our approach supports the evaluation of point and range conditions on multiple attributes. Protection against inferences from indexes is guaranteed by clustering tuples in boxes that are then mapped to the same index values, so to ensure collisions for individual attributes as well as their combinations. Our spatial-based algorithm partitions tuples to produce such a clustering in a way to ensure efficient query execution. Query translation and processing require the client to store a compact map. The experiments, evaluating query performance and client-storage requirements, confirm the efficiency enjoyed by our solution.
Data outsourcing; query execution; privacy
Settore INF/01 - Informatica
   Multi-Owner data Sharing for Analytics and Integration respecting Confidentiality and Owner control (MOSAICrOWN)
   MOSAICrOWN
   EUROPEAN COMMISSION
   H2020
   825333

   Machine Learning-based, Networking and Computing Infrastructure Resource Management of 5G and beyond Intelligent Networks (MARSAL)
   MARSAL
   EUROPEAN COMMISSION
   H2020
   101017171

   High quality Open data Publishing and Enrichment (HOPE)
   HOPE
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017MMJJRE_003
2021
IEEE
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
dffoprs-globecom2021.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 739.79 kB
Formato Adobe PDF
739.79 kB Adobe PDF Visualizza/Apri
Multi-dimensional_indexes_for_point_and_range_queries_on_outsourced_encrypted_data.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/903593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact