We consider the problem of the continuation with respect to a small parameter ɛ of spatially localized and time periodic solutions in 1-dimensional dNLS lattices, where ɛ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localized periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
Continuation of spatially localized periodic solutions in discrete NLS lattices via normal forms / V. Danesi, M. Sansottera, S. Paleari, T. Penati. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 108:(2022 May), pp. 106266.1-106266.23. [10.1016/j.cnsns.2022.106266]
Continuation of spatially localized periodic solutions in discrete NLS lattices via normal forms
V. DanesiPrimo
;M. SansotteraSecondo
;S. PaleariPenultimo
;T. Penati
2022
Abstract
We consider the problem of the continuation with respect to a small parameter ɛ of spatially localized and time periodic solutions in 1-dimensional dNLS lattices, where ɛ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localized periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.File | Dimensione | Formato | |
---|---|---|---|
DanSPP21_revised.pdf
Open Access dal 02/05/2024
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
757.96 kB
Formato
Adobe PDF
|
757.96 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S1007570422000120-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
714.22 kB
Formato
Adobe PDF
|
714.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.