We consider the problem of the continuation with respect to a small parameter ɛ of spatially localized and time periodic solutions in 1-dimensional dNLS lattices, where ɛ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localized periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.

Continuation of spatially localized periodic solutions in discrete NLS lattices via normal forms / V. Danesi, M. Sansottera, S. Paleari, T. Penati. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 108:(2022 May), pp. 106266.1-106266.23. [10.1016/j.cnsns.2022.106266]

Continuation of spatially localized periodic solutions in discrete NLS lattices via normal forms

V. Danesi
Primo
;
M. Sansottera
Secondo
;
S. Paleari
Penultimo
;
T. Penati
2022

Abstract

We consider the problem of the continuation with respect to a small parameter ɛ of spatially localized and time periodic solutions in 1-dimensional dNLS lattices, where ɛ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localized periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
Hamiltonian normal forms; Resonant tori; Perturbation theory; dNLS models; Discrete solitons;
Settore MAT/07 - Fisica Matematica
mag-2022
19-gen-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
DanSPP21_revised.pdf

Open Access dal 02/05/2024

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 757.96 kB
Formato Adobe PDF
757.96 kB Adobe PDF Visualizza/Apri
1-s2.0-S1007570422000120-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 714.22 kB
Formato Adobe PDF
714.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/903529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact