We apply the theory of semiparametric estimation to a Hong-Ou-Mandel interference experiment with a spectrally entangled two-photon state generated by spontaneous parametric down-conversion. Thanks to the semiparametric approach, we can evaluate the Cramér-Rao bound and find an optimal estimator for a particular parameter of interest without assuming perfect knowledge of the two-photon wave function, formally treated as an infinity of nuisance parameters. In particular, we focus on the estimation of the Hermite-Gauss components of the marginal symmetrized wave function, whose Fourier transform governs the shape of the temporal coincidence profile. We show that negativity of these components is an entanglement witness of the two-photon state.
Semiparametric estimation of the Hong-Ou-Mandel profile / V. Cimini, F. Albarelli, I. Gianani, M. Barbieri. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 104:6(2021 Dec 07), pp. L061701.L061701-1-L061701.L061701-6. [10.1103/PhysRevA.104.L061701]
Semiparametric estimation of the Hong-Ou-Mandel profile
F. AlbarelliSecondo
;
2021
Abstract
We apply the theory of semiparametric estimation to a Hong-Ou-Mandel interference experiment with a spectrally entangled two-photon state generated by spontaneous parametric down-conversion. Thanks to the semiparametric approach, we can evaluate the Cramér-Rao bound and find an optimal estimator for a particular parameter of interest without assuming perfect knowledge of the two-photon wave function, formally treated as an infinity of nuisance parameters. In particular, we focus on the estimation of the Hermite-Gauss components of the marginal symmetrized wave function, whose Fourier transform governs the shape of the temporal coincidence profile. We show that negativity of these components is an entanglement witness of the two-photon state.File | Dimensione | Formato | |
---|---|---|---|
Cimini et al_2021_Semiparametric estimation of the Hong-Ou-Mandel profile.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
657.44 kB
Formato
Adobe PDF
|
657.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.