In this paper, we derive new asymptotic expansions for the solutions of higher order elliptic equations in the presence of small inclusions. As a byproduct, we derive a topological derivative based algorithm for the reconstruction of piecewise smooth functions. This algorithm can be used for edge detection in imaging, topological optimization, and inverse problems, such as quantitative photoacoustic tomography, for which we demonstrate the effectiveness of our asymptotic expansion method numerically.

Asymptotic expansions for higher order elliptic equations with an application to quantitative photoacoustic tomography / A. Aspri, E. Beretta, O. Scherzer, M. Muszkieta. - In: SIAM JOURNAL ON IMAGING SCIENCES. - ISSN 1936-4954. - 13:4(2020), pp. 1781-1833. [10.1137/20M1317062]

Asymptotic expansions for higher order elliptic equations with an application to quantitative photoacoustic tomography

A. Aspri
Primo
;
2020

Abstract

In this paper, we derive new asymptotic expansions for the solutions of higher order elliptic equations in the presence of small inclusions. As a byproduct, we derive a topological derivative based algorithm for the reconstruction of piecewise smooth functions. This algorithm can be used for edge detection in imaging, topological optimization, and inverse problems, such as quantitative photoacoustic tomography, for which we demonstrate the effectiveness of our asymptotic expansion method numerically.
Asymptotic expansions; Higher order equations; Inverse problems; Quantitative photoacoustic; Thin stripes;
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
7.Aspri_SIIMS20.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 959.3 kB
Formato Adobe PDF
959.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1912.12361.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/898378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact