We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.
Fibred-categorical obstruction theory / A.S. Cigoli, S. Mantovani, G. Metere, E.M. Vitale. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 593:(2022), pp. 105-141. [10.1016/j.jalgebra.2021.10.040]
Fibred-categorical obstruction theory
S. MantovaniSecondo
;G. Metere
;
2022
Abstract
We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.File | Dimensione | Formato | |
---|---|---|---|
view.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
369.6 kB
Formato
Adobe PDF
|
369.6 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021869321005378-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
486.8 kB
Formato
Adobe PDF
|
486.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.