During biotic invasions, native prey are abruptly exposed to novel predators and are faced with unprecedented predatory pressures. Under these circumstances, the lack of common evolutionary history may hamper predator recognition by native prey, undermining the expression of effective antipredator responses. Nonetheless, mechanisms allowing prey to overcome evolutionary naïveté exist. For instance, in naïve prey, history of coevolution with similar native predators or detection of general traits characterizing predators can favor the recognition of stimuli released by invasive predators. However, few studies have assessed how these mechanisms shape prey response at the community level. Here, we evaluated behavioral responses in naïve larvae of 13 amphibian species to chemical and visual cues associated with an invasive predator, the American red swamp crayfish (Procambarus clarkii). Moreover, we investigated how variation among species responses was related to their coexistence with similar native crayfish predators. Amphibian larvae altered their behavior in presence of visual stimuli of the alien crayfish, while chemical cues elicited feeble and contrasting behavioral shifts. Activity reduction was the most common and stronger response, whereas some species exhibited more heterogeneous strategies also involving distancing and rapid escape response. Interestingly, species sharing coevolutionary history with the native crayfish were able to finely tune their response to the invasive one, performing bursts to escape. These results suggest native prey can respond to invasive predators through recognition of generic risk cues (e.g., approaching large shapes), still the capability of modulating antipredator strategies may also depend on their coevolutionary history with similar native predators.

Visual recognition and coevolutionary history drive responses of amphibians to an invasive predator / A. Melotto, G.F. Ficetola, E. Alari, S. Romagnoli, R. Manenti. - In: BEHAVIORAL ECOLOGY. - ISSN 1045-2249. - 32:6(2021), pp. 1352-1362. [10.1093/beheco/arab101]

Visual recognition and coevolutionary history drive responses of amphibians to an invasive predator

A. Melotto
Primo
;
G.F. Ficetola;R. Manenti
Ultimo
2021

Abstract

During biotic invasions, native prey are abruptly exposed to novel predators and are faced with unprecedented predatory pressures. Under these circumstances, the lack of common evolutionary history may hamper predator recognition by native prey, undermining the expression of effective antipredator responses. Nonetheless, mechanisms allowing prey to overcome evolutionary naïveté exist. For instance, in naïve prey, history of coevolution with similar native predators or detection of general traits characterizing predators can favor the recognition of stimuli released by invasive predators. However, few studies have assessed how these mechanisms shape prey response at the community level. Here, we evaluated behavioral responses in naïve larvae of 13 amphibian species to chemical and visual cues associated with an invasive predator, the American red swamp crayfish (Procambarus clarkii). Moreover, we investigated how variation among species responses was related to their coexistence with similar native crayfish predators. Amphibian larvae altered their behavior in presence of visual stimuli of the alien crayfish, while chemical cues elicited feeble and contrasting behavioral shifts. Activity reduction was the most common and stronger response, whereas some species exhibited more heterogeneous strategies also involving distancing and rapid escape response. Interestingly, species sharing coevolutionary history with the native crayfish were able to finely tune their response to the invasive one, performing bursts to escape. These results suggest native prey can respond to invasive predators through recognition of generic risk cues (e.g., approaching large shapes), still the capability of modulating antipredator strategies may also depend on their coevolutionary history with similar native predators.
amphibian community, antipredator behavior, history of coexistence, invasive species, predator recognition, prey naïveté
Settore BIO/05 - Zoologia
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Multispecies_Manuscript_preprint.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 857.83 kB
Formato Adobe PDF
857.83 kB Adobe PDF Visualizza/Apri
arab101.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/891555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact