The aim of this paper is to study some modular contractions of the moduli space of stable pointed curves Mg,n . These new moduli spaces, which are modular compactifications of Mg,n, are related to the minimal model program for Mg,n and have been introduced by Codogni et al. (2018). We interpret them as log canonical models of adjoint divisors and we then describe the Shokurov decomposition of a region of boundary divisors on Mg,n .

On some modular contractions of the moduli space of stable pointed curves / G. Codogni, L. Tasin, F. Viviani. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 15:5(2021 Jun), pp. 1245-1281. [10.2140/ant.2021.15.1245]

On some modular contractions of the moduli space of stable pointed curves

L. Tasin
Secondo
;
2021

Abstract

The aim of this paper is to study some modular contractions of the moduli space of stable pointed curves Mg,n . These new moduli spaces, which are modular compactifications of Mg,n, are related to the minimal model program for Mg,n and have been introduced by Codogni et al. (2018). We interpret them as log canonical models of adjoint divisors and we then describe the Shokurov decomposition of a region of boundary divisors on Mg,n .
No
English
birational contractions; modular compactifications; moduli of curves
Settore MAT/03 - Geometria
Articolo
Esperti anonimi
Pubblicazione scientifica
   Geometry of Algebraic Varieties
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2015EYPTSB_006
giu-2021
Mathematical Science Publishers
15
5
1245
1281
37
Pubblicato
Periodico con rilevanza internazionale
scopus
Aderisco
info:eu-repo/semantics/article
On some modular contractions of the moduli space of stable pointed curves / G. Codogni, L. Tasin, F. Viviani. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 15:5(2021 Jun), pp. 1245-1281. [10.2140/ant.2021.15.1245]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
Periodico con Impact Factor
G. Codogni, L. Tasin, F. Viviani
File in questo prodotto:
File Dimensione Formato  
ant-v15-n5-p07-p.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1904.13212.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 435.88 kB
Formato Adobe PDF
435.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/891391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact