Entity resolution (ER) aims at matching records that refer to the same real-world entity, e.g., the same product sold by different websites. Recent solutions to this problem have reached unprecedented accuracy. Nonetheless, due to intrinsic limitations of automatic testing methods, it is known among researchers and practitioners that a significant manual effort is still required in production environments for verification and cleaning of ER results. In order to facilitate such activity, we are developing the E2L methodology (Entity to Labels) for automatic computation of human-readable labels of identified entities. Given a selection of entities for which the user wants to compute labels, E2L first extracts relevant features by training a classifier on the ER results, then it leverages the notion of black-box model explanation to select the most important terms for the classifier, and finally it uses those terms to compute labels. In this paper we report our first experiences with E2L. Preliminary results on a real-world application scenario show that E2L labels can provide an accurate description of entities and a natural way for humans to assess the trustworthiness of ER results at a glance.

Automatic entity labeling through explanation techniques / S. Castano, A. Ferrara, D. Firmani, J.G. Mathew, S. Montanelli (CEUR WORKSHOP PROCEEDINGS). - In: SEBD 2021 : Italian Symposium on Advanced Database Systems / [a cura di] S. Greco, M. Lenzerini, E. Masciari, A. Tagarelli. - [s.l] : CEUR-WS, 2021. - pp. 299-306 (( Intervento presentato al 29. convegno Italian Symposium on Advanced Database Systems tenutosi a Pizzo Calabro nel 2021.

Automatic entity labeling through explanation techniques

S. Castano
Primo
;
A. Ferrara
Secondo
;
S. Montanelli
Ultimo
2021

Abstract

Entity resolution (ER) aims at matching records that refer to the same real-world entity, e.g., the same product sold by different websites. Recent solutions to this problem have reached unprecedented accuracy. Nonetheless, due to intrinsic limitations of automatic testing methods, it is known among researchers and practitioners that a significant manual effort is still required in production environments for verification and cleaning of ER results. In order to facilitate such activity, we are developing the E2L methodology (Entity to Labels) for automatic computation of human-readable labels of identified entities. Given a selection of entities for which the user wants to compute labels, E2L first extracts relevant features by training a classifier on the ER results, then it leverages the notion of black-box model explanation to select the most important terms for the classifier, and finally it uses those terms to compute labels. In this paper we report our first experiences with E2L. Preliminary results on a real-world application scenario show that E2L labels can provide an accurate description of entities and a natural way for humans to assess the trustworthiness of ER results at a glance.
Settore INF/01 - Informatica
http://ceur-ws.org/Vol-2994/paper32.pdf
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
paper32.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 860.7 kB
Formato Adobe PDF
860.7 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/891353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact