Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.
Circular dichroism of the peripheral chlorophylls in photosystem II reaction centers revealed by electrochemical oxidation / T.N. Kropacheva, M. Germano, G. Zucchelli, R.C. Jennings, H.J. van Gorkom. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. - ISSN 0005-2728. - 1709:2(2005), pp. 119-126.
Circular dichroism of the peripheral chlorophylls in photosystem II reaction centers revealed by electrochemical oxidation
R.C. JenningsPenultimo
;
2005
Abstract
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.