Paludiculture, sustainable and climate-smart land use of formerly drained, rewetted organic soils, can produce significant biomass in peatlands whilst potentially restoring several additional wetland services. However, the site conditions that allow maximum biomass production and nutrient removal by paludiculture crops have rarely been studied. We studied the relationship between soil characteristics, including plant-available nutrients, peak biomass, stand age, harvest period, and nutrient removal potential for two important paludiculture species, Typha latifolia and Phragmites australis, on rewetted peat and mineral soils in a large-scale European survey. T. latifolia and P. australis were able to produce an aboveground peak biomass of 10-30 t dry matter ha-1 y-1 and absorbed significant amounts of carbon, nitrogen, phosphorus, and potassium in stands older than 3 years. They were able to grow in a wide range of abiotic soil conditions. Low N:P ratios (5-9) and low N content (< 2%) in T. latifolia tissue suggest N limitation, but P uptake was still surprisingly high. P. australis had higher N:P ratios (8-25) and was less responsive to nutrients, suggesting a higher nutrient use efficiency. However, both species could still produce significant biomass at lower nutrient loads and in winter, when water content was low and nutrient removal still reasonable. Based on this European wetland survey, paludiculture holds a great potential to combine peat preservation, water purification, nutrient removal, and a high biomass production. Paludicrops take up substantial amounts of nutrients, and both summer and winter harvests provide an effective way to sequester carbon in a range of high-valued biomass products and to control nutrient effluxes from rewetted sites at the landscape scale.

Nutrient sequestration and biomass production by Phragmites australis and Typha latifolia in European rewetted peatlands / J. Geurts, C. Oehmke, C. Lambertini, F. Eller, B. Sorrell, S. Mandiola, A. Grootjans, H. Brix, W. Wichtmann, L. Lamers, C. Fritz. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 747(2020), pp. 141102.1-141102.10. [10.1016/j.scitotenv.2020.141102]

Nutrient sequestration and biomass production by Phragmites australis and Typha latifolia in European rewetted peatlands

C. Lambertini;
2020

Abstract

Paludiculture, sustainable and climate-smart land use of formerly drained, rewetted organic soils, can produce significant biomass in peatlands whilst potentially restoring several additional wetland services. However, the site conditions that allow maximum biomass production and nutrient removal by paludiculture crops have rarely been studied. We studied the relationship between soil characteristics, including plant-available nutrients, peak biomass, stand age, harvest period, and nutrient removal potential for two important paludiculture species, Typha latifolia and Phragmites australis, on rewetted peat and mineral soils in a large-scale European survey. T. latifolia and P. australis were able to produce an aboveground peak biomass of 10-30 t dry matter ha-1 y-1 and absorbed significant amounts of carbon, nitrogen, phosphorus, and potassium in stands older than 3 years. They were able to grow in a wide range of abiotic soil conditions. Low N:P ratios (5-9) and low N content (< 2%) in T. latifolia tissue suggest N limitation, but P uptake was still surprisingly high. P. australis had higher N:P ratios (8-25) and was less responsive to nutrients, suggesting a higher nutrient use efficiency. However, both species could still produce significant biomass at lower nutrient loads and in winter, when water content was low and nutrient removal still reasonable. Based on this European wetland survey, paludiculture holds a great potential to combine peat preservation, water purification, nutrient removal, and a high biomass production. Paludicrops take up substantial amounts of nutrients, and both summer and winter harvests provide an effective way to sequester carbon in a range of high-valued biomass products and to control nutrient effluxes from rewetted sites at the landscape scale.
Biomass use; Harvest period; Paludiculture; Soil characteristics; Stand age; Wetlands
Settore BIO/03 - Botanica Ambientale e Applicata
Settore BIO/02 - Botanica Sistematica
Settore AGR/02 - Agronomia e Coltivazioni Erbacee
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969720346313-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/890440
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact