In this thesis we study some complete linear systems associated to divisors of Hilbert schemes of 2 points on complex projective K3 surfaces with Picard group of rank 1, together with the rational maps induced. We call these varieties Hilbert squares of generic K3 surfaces, and they are examples of irreducible holomorphic symplectic (IHS) manifold. In the first part of the thesis, using lattice theory, Nakajima operators and the model of Lehn–Sorger, we give a basis for the subvector space of the singular cohomology ring with rational coefficients generated by rational Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. We then exploit a theorem by Qin and Wang together with a result by Ellingsrud, Göttsche and Lehn to obtain a basis of the lattice of integral Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. In the second part of the thesis we study the following problem: if X is the Hilbert square of a generic K3 surface admitting an ample divisor D with q(D)=2, where q is the Beauville–Bogomolov–Fujiki form, describe geometrically the rational map induced by the complete linear system |D|. The main result of the thesis shows that such an X, except on the case of the Hilbert square of a generic quartic surface of P^3, is a double EPW sextic, i.e., the double cover of an EPW sextic, a normal hypersurface of P^5, ramified over its singular locus. Moreover, the rational map induced by |D| is a morphism and coincides exactly with this double covering. The main tools to obtain this result are the description of integral Hodge classes of type (2, 2) of the first part of the thesis and the existence of an anti-symplectic involution on such varieties due to a theorem by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti.

In questa tesi studiamo alcuni sistemi lineari completi associati a divisori di schemi di Hilbert di 2 punti su una superficie K3 proiettiva complessa con gruppo di Picard di rango 1, e le mappe razionali indotte. Queste varietà sono chiamate quadrati di Hilbert su superfici K3 generiche, e sono esempi di varietà irriducibili olomorfe simplettiche (varietà IHS). Nella prima parte della tesi, usando la teoria dei reticoli, gli operatori di Nakajima e il modello di Lehn–Sorger, diamo una base per il sottospazio vettoriale dell’anello di coomologia singolare a coefficienti razionali generato dalle classi di Hodge razionali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi superficie K3 proiettiva. In seguito sfruttiamo un teorema di Qin e Wang insieme a un risultato di Ellingsrud, Göttsche e Lehn per ottenere una base del reticolo delle classi di Hodge integrali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi superficie K3 proiettiva. Nella seconda parte della tesi studiamo il problema seguente: se X è il quadrato di Hilbert di una superficie K3 generica che ammette un divisore ampio D con q(D) = 2, dove q è la forma quadratica di Beauville-Bogomolov-Fujiki, descrivere geometricamente la mappa razionale indotta dal sistema lineare completo |D|. Il risultato principale della tesi mostra che tale X, tranne nel caso del quadrato di Hilbert di una superficie quartica generica di P^3, è una doppia EPW sestica, cioè il ricoprimento doppio di una EPW sestica, una ipersuperficie normale di P^5, ramificato nel suo luogo singolare. Inoltre la mappa razionale indotta da |D| coincide proprio con tale ricoprimento doppio. Gli strumenti principali per ottenere questo risultato sono la descrizione del reticolo delle classi integrali di Hodge di tipo (2, 2) della prima parte della tesi e l’esistenza di un’involuzione anti-simplettica su tali varietà per un teorema di Boissière, Cattaneo, Nieper-Wißkirchen e Sarti.

LINEAR SYSTEMS ON IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS / S. Novario ; tutor: L. Van Geemen, S. Boissière ; coordinatore: V. Mastropietro. - : . Dipartimento di Matematica Federigo Enriques, 2021 Dec 17. ((34. ciclo, Anno Accademico 2021. [10.13130/novario-simone_phd2021-12-17].

LINEAR SYSTEMS ON IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS

S. Novario
2021

Abstract

In questa tesi studiamo alcuni sistemi lineari completi associati a divisori di schemi di Hilbert di 2 punti su una superficie K3 proiettiva complessa con gruppo di Picard di rango 1, e le mappe razionali indotte. Queste varietà sono chiamate quadrati di Hilbert su superfici K3 generiche, e sono esempi di varietà irriducibili olomorfe simplettiche (varietà IHS). Nella prima parte della tesi, usando la teoria dei reticoli, gli operatori di Nakajima e il modello di Lehn–Sorger, diamo una base per il sottospazio vettoriale dell’anello di coomologia singolare a coefficienti razionali generato dalle classi di Hodge razionali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi superficie K3 proiettiva. In seguito sfruttiamo un teorema di Qin e Wang insieme a un risultato di Ellingsrud, Göttsche e Lehn per ottenere una base del reticolo delle classi di Hodge integrali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi superficie K3 proiettiva. Nella seconda parte della tesi studiamo il problema seguente: se X è il quadrato di Hilbert di una superficie K3 generica che ammette un divisore ampio D con q(D) = 2, dove q è la forma quadratica di Beauville-Bogomolov-Fujiki, descrivere geometricamente la mappa razionale indotta dal sistema lineare completo |D|. Il risultato principale della tesi mostra che tale X, tranne nel caso del quadrato di Hilbert di una superficie quartica generica di P^3, è una doppia EPW sestica, cioè il ricoprimento doppio di una EPW sestica, una ipersuperficie normale di P^5, ramificato nel suo luogo singolare. Inoltre la mappa razionale indotta da |D| coincide proprio con tale ricoprimento doppio. Gli strumenti principali per ottenere questo risultato sono la descrizione del reticolo delle classi integrali di Hodge di tipo (2, 2) della prima parte della tesi e l’esistenza di un’involuzione anti-simplettica su tali varietà per un teorema di Boissière, Cattaneo, Nieper-Wißkirchen e Sarti.
VAN GEEMEN, LAMBERTUS
MASTROPIETRO, VIERI
In this thesis we study some complete linear systems associated to divisors of Hilbert schemes of 2 points on complex projective K3 surfaces with Picard group of rank 1, together with the rational maps induced. We call these varieties Hilbert squares of generic K3 surfaces, and they are examples of irreducible holomorphic symplectic (IHS) manifold. In the first part of the thesis, using lattice theory, Nakajima operators and the model of Lehn–Sorger, we give a basis for the subvector space of the singular cohomology ring with rational coefficients generated by rational Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. We then exploit a theorem by Qin and Wang together with a result by Ellingsrud, Göttsche and Lehn to obtain a basis of the lattice of integral Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. In the second part of the thesis we study the following problem: if X is the Hilbert square of a generic K3 surface admitting an ample divisor D with q(D)=2, where q is the Beauville–Bogomolov–Fujiki form, describe geometrically the rational map induced by the complete linear system |D|. The main result of the thesis shows that such an X, except on the case of the Hilbert square of a generic quartic surface of P^3, is a double EPW sextic, i.e., the double cover of an EPW sextic, a normal hypersurface of P^5, ramified over its singular locus. Moreover, the rational map induced by |D| is a morphism and coincides exactly with this double covering. The main tools to obtain this result are the description of integral Hodge classes of type (2, 2) of the first part of the thesis and the existence of an anti-symplectic involution on such varieties due to a theorem by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti.
Dans cette thèse, nous étudions certains systèmes linéaires complets associés aux diviseurs des schémas de Hilbert de 2 points sur des surfaces K3 projectives complexes avec groupe de Picard de rang 1, et les fonctions rationnelles induites. Ces variétés sont appelées carrés de Hilbert sur des surfaces K3 génériques, et sont un exemple de variété symplectique holomorphe irréductible (variété IHS). Dans la première partie de la thèse, en utilisant la théorie des réseaux, les opérateurs de Nakajima et le modèle de Lehn–Sorger, nous donnons une base pour le sous-espace vectoriel de l’anneau de cohomologie singulière à coefficients rationnels engendré par les classes de Hodge rationnels de type (2, 2) sur le carré de Hilbert de toute surface K3 projective. Nous exploitons ensuite un théorème de Qin et Wang ainsi qu’un résultat de Ellingsrud, Göttsche et Lehn pour obtenir une base du réseau des classes de Hodge intégraux de type (2, 2) sur le carré de Hilbert d’une surface K3 projective quelconque. Dans la deuxième partie de la thèse, nous étudions le problème suivant : si X est le carré de Hilbert d’une surface K3 générique tel que X admet un diviseur ample D avec q(D) = 2, où q est la forme quadratique de Beauville–Bogomolov–Fujiki, on veut décrire géométriquement la fonction rationnelle induite par le système linéaire complet |D|. Le résultat principal de la thèse montre qu’une telle X, sauf dans le cas du carré de Hilbert d’une surface quartique générique de P^3, est une double sextique EPW, c’est-à-dire le revêtement double d’une sextique EPW, une hypersurface normale de P^5, ramifié sur son lieu singulier. En plus la fonction rationnelle induite par |D| est exactement ce revêtement double. Les outils principaux pour obtenir ce résultat sont la description des classes de Hodge intégraux de type (2, 2) de la première partie de la thèse et l’existence d’une involution anti-symplectique sur de telles variétés par un théorème de Boissière, Cattaneo, Nieper-Wißkirchen et Sarti.
Algebraic geometry; Hilbert schemes; Irreducible Holomorphic symplectic manifolds; Hodge classes; Automorphism group; Algebraic cycles; Linear systems
Settore MAT/03 - Geometria
LINEAR SYSTEMS ON IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS / S. Novario ; tutor: L. Van Geemen, S. Boissière ; coordinatore: V. Mastropietro. - : . Dipartimento di Matematica Federigo Enriques, 2021 Dec 17. ((34. ciclo, Anno Accademico 2021. [10.13130/novario-simone_phd2021-12-17].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12353.pdf

accesso aperto

Descrizione: Testo completo della tesi di dottorato di Simone Novario
Tipologia: Tesi di dottorato completa
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/886303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact