In the existing literature about innovation processes, the proposed models often satisfy the Heaps’ law, regarding the rate at which novelties appear, and the Zipf’s law, that states a power law behavior for the frequency distribution of the elements. However, there are empirical cases far from showing a pure power law behavior and such a deviation is mostly present for elements with high frequencies. We explain this phenomenon by means of a suitable “damping” effect in the probability of a repetition of an old element. We introduce an extremely general model, whose key element is the update function, that can be suitably chosen in order to reproduce the behaviour exhibited by the empirical data. In particular, we explicit the update function for some Twitter data sets and show great performances with respect to Heaps’ law and, above all, with respect to the fitting of the frequency-rank plots for low and high frequencies. Moreover, we also give other examples of update functions, that are able to reproduce the behaviors empirically observed in other contexts.

Twitter as an innovation process with damping effect / G. Aletti, I. Crimaldi. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021), pp. 21243.1-21243.14. [10.1038/s41598-021-00378-4]

Twitter as an innovation process with damping effect

G. Aletti
Primo
;
2021

Abstract

In the existing literature about innovation processes, the proposed models often satisfy the Heaps’ law, regarding the rate at which novelties appear, and the Zipf’s law, that states a power law behavior for the frequency distribution of the elements. However, there are empirical cases far from showing a pure power law behavior and such a deviation is mostly present for elements with high frequencies. We explain this phenomenon by means of a suitable “damping” effect in the probability of a repetition of an old element. We introduce an extremely general model, whose key element is the update function, that can be suitably chosen in order to reproduce the behaviour exhibited by the empirical data. In particular, we explicit the update function for some Twitter data sets and show great performances with respect to Heaps’ law and, above all, with respect to the fitting of the frequency-rank plots for low and high frequencies. Moreover, we also give other examples of update functions, that are able to reproduce the behaviors empirically observed in other contexts.
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore SECS-S/01 - Statistica
2021
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41598-021-00378-4.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/884950
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact