Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist, but often their consequences for structure formation in the non-linear sector are not yet accurately known. In this work, we employ high-resolution numerical simulations of f (R)-gravity models coupled with a semianalytic model (SAM) for galaxy formation to obtain detailed predictions for the evolution of galaxy properties. The f (R)-gravity models imply the existence of a 'fifth-force', which is however locally suppressed, preserving the successes of general relativity on Solar system scales.We show that dark matter haloes in f (R)-gravity models are characterized by amodified virial scaling with respect to the λ cold dark matter (λCDM ) scenario, reflecting a higher dark matter velocity dispersion at a given mass. This effect is taken into account in the SAM by an appropriate modification of the mass-temperature relation. We find that the statistical properties predicted for galaxies (such as the stellarmass function and the cosmic star formation rate) in f (R)-gravity show generally only very small differences relative to λCDM, smaller than the dispersion between the results of different SAM models, which can be viewed as a measure of their systematic uncertainty. We also demonstrate that galaxy bias is not able to disentangle between f (R)-gravity and the standard cosmological scenario. However, f (R)- gravity imprints modifications in the linear growth rate of cosmic structures at large scale, which can be recovered from the statistical properties of large galaxy samples.

Semi-analytic galaxy formation in f(R)-gravity cosmologies / F. Fontanot, E. Puchwein, V. Springel, D. Bianchi. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 436:3(2013 Dec), pp. 2672-2679. [10.1093/mnras/stt1763]

Semi-analytic galaxy formation in f(R)-gravity cosmologies

D. Bianchi
Ultimo
2013

Abstract

Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist, but often their consequences for structure formation in the non-linear sector are not yet accurately known. In this work, we employ high-resolution numerical simulations of f (R)-gravity models coupled with a semianalytic model (SAM) for galaxy formation to obtain detailed predictions for the evolution of galaxy properties. The f (R)-gravity models imply the existence of a 'fifth-force', which is however locally suppressed, preserving the successes of general relativity on Solar system scales.We show that dark matter haloes in f (R)-gravity models are characterized by amodified virial scaling with respect to the λ cold dark matter (λCDM ) scenario, reflecting a higher dark matter velocity dispersion at a given mass. This effect is taken into account in the SAM by an appropriate modification of the mass-temperature relation. We find that the statistical properties predicted for galaxies (such as the stellarmass function and the cosmic star formation rate) in f (R)-gravity show generally only very small differences relative to λCDM, smaller than the dispersion between the results of different SAM models, which can be viewed as a measure of their systematic uncertainty. We also demonstrate that galaxy bias is not able to disentangle between f (R)-gravity and the standard cosmological scenario. However, f (R)- gravity imprints modifications in the linear growth rate of cosmic structures at large scale, which can be recovered from the statistical properties of large galaxy samples.
Cosmology: theory; Galaxies: evolution; Galaxies: formation
Settore FIS/05 - Astronomia e Astrofisica
dic-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
stt1763.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 971.5 kB
Formato Adobe PDF
971.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/881669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact