There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.

Modes of climate variability bridge proximate and evolutionary mechanisms of masting / D. Ascoli, A. Hacket-Pain, I.S. Pearse, G. Vacchiano, S. Corti, P. Davini. - In: PHILOSOPHICAL TRANSACTIONS - ROYAL SOCIETY. BIOLOGICAL SCIENCES. - ISSN 0962-8436. - 376:1839(2021 Dec 06), pp. 20200380.1-20200380.13. [10.1098/rstb.2020.0380]

Modes of climate variability bridge proximate and evolutionary mechanisms of masting

G. Vacchiano;
2021

Abstract

There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
ENSO; Moran effect; climate change; disturbance ecology; environmental prediction; reproduction
Settore AGR/05 - Assestamento Forestale e Selvicoltura
Article (author)
File in questo prodotto:
File Dimensione Formato  
2021 PRSB disturbances.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/876797
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact