We analyze strategic voting under proportional rule and two parties, embedding the basic spatial model into the Poisson framework of population uncertainty. We prove that there exists a unique Nash equilibrium. We show that it is characterized by a cutpoint in the policy space that is always located between the average of the two parties’ positions and the median of the distribution of voters’ types. We also show that, as the expected number of voters goes to infinity, the equilibrium converges to that of the case with deterministic population size.

Poisson voting games under proportional rule / F. De Sinopoli, C. Meroni. - In: SOCIAL CHOICE AND WELFARE. - ISSN 0176-1714. - 58:3(2022), pp. 507-526. [10.1007/s00355-021-01367-2]

Poisson voting games under proportional rule

C. Meroni
2022

Abstract

We analyze strategic voting under proportional rule and two parties, embedding the basic spatial model into the Poisson framework of population uncertainty. We prove that there exists a unique Nash equilibrium. We show that it is characterized by a cutpoint in the policy space that is always located between the average of the two parties’ positions and the median of the distribution of voters’ types. We also show that, as the expected number of voters goes to infinity, the equilibrium converges to that of the case with deterministic population size.
Settore SECS-P/01 - Economia Politica
16-ott-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
PoissonProportional.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/876132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact