Obesity is a complex disease with multifactorial causes, and its prevalence is becoming a serious health crisis. For this reason, there is a crucial need to identify novel targets and players. With this aim in mind, we analyzed via RNA-sequencing the subcutaneous adipose tissue of normal weight and obesity-affected women, highlighting the differential expression in the two tissues. We specifically focused on long non-coding RNAs, as 6 of these emerged as dysregulated in the diseased-tissue (COL4A2-AS2, RPS21-AS, PELATON, ITGB2-AS1, ACER2-AS and CTEPHA1). For each of them, we performed both a through in silico dissection and in vitro validation, to predict their function during adipogenesis. We report the lncRNAs expression during adipose derived stem cells differentiation to adipocytes as model of adipogenesis and their potential modulation by adipogenesis-related transcription factors (C/EBPs and PPARγ). Moreover, inhibiting CTEPHA1 expression we investigated its impact on adipogenesis-related transcription factors, showing its significative dysregulation of C/EBPα expression. Lastly, we dissected the subcellular localization, pathway involvement and disease-correlation for coding differentially expressed genes. Together, these findings highlight a transcriptional deregulation at the basis of obesity, impacted by both coding and long non-coding RNAs.
Transcriptional characterization of subcutaneous adipose tissue in obesity affected women highlights metabolic dysfunction and implications for lncRNAs / F. Rey, L. Messa, C. Pandini, B. Barzaghini, G. Micheletto, M.T. Raimondi, S. Bertoli, C. Cereda, G.V. Zuccotti, R. Cancello, S. Carelli. - In: GENOMICS. - ISSN 0888-7543. - 113:6(2021 Nov), pp. 3919-3934. [10.1016/j.ygeno.2021.09.014]
Transcriptional characterization of subcutaneous adipose tissue in obesity affected women highlights metabolic dysfunction and implications for lncRNAs
F. Rey;C. Pandini;G. Micheletto;S. Bertoli;G.V. Zuccotti;R. Cancello;S. Carelli
2021
Abstract
Obesity is a complex disease with multifactorial causes, and its prevalence is becoming a serious health crisis. For this reason, there is a crucial need to identify novel targets and players. With this aim in mind, we analyzed via RNA-sequencing the subcutaneous adipose tissue of normal weight and obesity-affected women, highlighting the differential expression in the two tissues. We specifically focused on long non-coding RNAs, as 6 of these emerged as dysregulated in the diseased-tissue (COL4A2-AS2, RPS21-AS, PELATON, ITGB2-AS1, ACER2-AS and CTEPHA1). For each of them, we performed both a through in silico dissection and in vitro validation, to predict their function during adipogenesis. We report the lncRNAs expression during adipose derived stem cells differentiation to adipocytes as model of adipogenesis and their potential modulation by adipogenesis-related transcription factors (C/EBPs and PPARγ). Moreover, inhibiting CTEPHA1 expression we investigated its impact on adipogenesis-related transcription factors, showing its significative dysregulation of C/EBPα expression. Lastly, we dissected the subcellular localization, pathway involvement and disease-correlation for coding differentially expressed genes. Together, these findings highlight a transcriptional deregulation at the basis of obesity, impacted by both coding and long non-coding RNAs.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0888754321003566-main (1)_compressed.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0888754321003566-main.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
6.01 MB
Formato
Adobe PDF
|
6.01 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.