We prove that the moduli stacks of marked and labelled Hodge-special Gushel–Mukai fourfolds are isomorphic. As an application, we construct rational maps from the stack of Hodge-special Gushel–Mukai fourfolds of discriminant d to the moduli space of (twisted) degree-d polarized K3 surfaces. We use these results to prove a counting formula for the number of 4-dimensional fibers of Fourier–Mukai partners of very general Hodge-special Gushel–Mukai fourfolds with associated K3 surface, and a lower bound for this number in the case of a twisted associated K3 surface.

Marked and labelled Gushel-Mukai fourfolds / E. Brakkee, L. Pertusi (PROGRESS IN MATHEMATICS). - In: Rationality of Varieties / [a cura di] G. Farkas, G. van der Geer, M. Shen, L. Taelman. - [s.l] : Springer, 2021. - ISBN 978-3-030-75421-1. - pp. 129-146

Marked and labelled Gushel-Mukai fourfolds

L. Pertusi
2021

Abstract

We prove that the moduli stacks of marked and labelled Hodge-special Gushel–Mukai fourfolds are isomorphic. As an application, we construct rational maps from the stack of Hodge-special Gushel–Mukai fourfolds of discriminant d to the moduli space of (twisted) degree-d polarized K3 surfaces. We use these results to prove a counting formula for the number of 4-dimensional fibers of Fourier–Mukai partners of very general Hodge-special Gushel–Mukai fourfolds with associated K3 surface, and a lower bound for this number in the case of a twisted associated K3 surface.
Settore MAT/03 - Geometria
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
MarLabGM.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 445.27 kB
Formato Adobe PDF
445.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/870898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact