Objective: Although anoxia/reoxygenation of cultured cells has been used to model lung ischemia-reperfusion injury, this does not accurately mimic events experienced by lung cells while a lung is retrieved from a donor, stored, and transplanted. We developed an in vitro model of nonhypoxic ischemia-reperfusion injury to simulate these events. Methods: Human umbilical vein endothelial cells underwent simulated cold ischemia by replacing 37 degrees C culture media with 4 degrees C Perfadex (Vitrolife, Kungsbacka, Sweden) solution for 5 hours in 100% O-2. Culture dishes were allowed to warm to room temperature for 1 hour (implantation), and then Perfadex solution was replaced with 37 degrees C culture media (reperfusion). Results: During cold ischemia, the human umbilical vein endothelial cell filamentous actin cytoskeleton quickly became rearranged, and gaps developed in the previously confluent monolayer occupying 20% of the surface area. Simulated reperfusion resulted in reorganization to a confluent monolayer. Development of gaps was not due to enhanced necrosis based on lactate dehydrogenase retention assay. Endothelial cytoskeletal rearrangement could account for early edema caused by ischemia-reperfusion injury with reperfusion. Mitogen-activated protein kinase and nuclear factor kappa B activation occurred with simulated reperfusion despite normoxia. Levels of the proinflammatory cytokines interleukin 6 and interleukin 8 were significantly increased in media at the end of reperfusion. Conclusions: Exposing human umbilical vein endothelial cells to simulated cold ischemia without hypoxia causes reversible cytoskeletal alterations, activation of inflammatory pathways, and elaboration of cytokines. Because this model accurately depicts events occurring during lung transplantation, it will be useful to explore mechanisms regulating lung cell response to this unique form of ischemia-reperfusion injury.

In vitro modeling of non-hypoxic ischemia-reperfusion simulating lung transplantation / M. Casiraghi, J. Tatreau, J. Abano, J. Blackwell, L. Watson, K. Burridge, S. Randell, T. Egan. - In: JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY. - ISSN 0022-5223. - 183:3(2009), pp. 760-767. [10.1016/j.jtcvs.2009.05.037]

In vitro modeling of non-hypoxic ischemia-reperfusion simulating lung transplantation

M. Casiraghi
Primo
;
2009

Abstract

Objective: Although anoxia/reoxygenation of cultured cells has been used to model lung ischemia-reperfusion injury, this does not accurately mimic events experienced by lung cells while a lung is retrieved from a donor, stored, and transplanted. We developed an in vitro model of nonhypoxic ischemia-reperfusion injury to simulate these events. Methods: Human umbilical vein endothelial cells underwent simulated cold ischemia by replacing 37 degrees C culture media with 4 degrees C Perfadex (Vitrolife, Kungsbacka, Sweden) solution for 5 hours in 100% O-2. Culture dishes were allowed to warm to room temperature for 1 hour (implantation), and then Perfadex solution was replaced with 37 degrees C culture media (reperfusion). Results: During cold ischemia, the human umbilical vein endothelial cell filamentous actin cytoskeleton quickly became rearranged, and gaps developed in the previously confluent monolayer occupying 20% of the surface area. Simulated reperfusion resulted in reorganization to a confluent monolayer. Development of gaps was not due to enhanced necrosis based on lactate dehydrogenase retention assay. Endothelial cytoskeletal rearrangement could account for early edema caused by ischemia-reperfusion injury with reperfusion. Mitogen-activated protein kinase and nuclear factor kappa B activation occurred with simulated reperfusion despite normoxia. Levels of the proinflammatory cytokines interleukin 6 and interleukin 8 were significantly increased in media at the end of reperfusion. Conclusions: Exposing human umbilical vein endothelial cells to simulated cold ischemia without hypoxia causes reversible cytoskeletal alterations, activation of inflammatory pathways, and elaboration of cytokines. Because this model accurately depicts events occurring during lung transplantation, it will be useful to explore mechanisms regulating lung cell response to this unique form of ischemia-reperfusion injury.
Settore MED/21 - Chirurgia Toracica
Article (author)
File in questo prodotto:
File Dimensione Formato  
J Thorac Cardiovasc Surg 2009.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri
1-s2.0-S0022522309008150-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 439.25 kB
Formato Adobe PDF
439.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/868522
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact