We consider compatible group structures on a V-category, where V is a quantale, and we study the topological and algebraic properties of such groups. Examples of such structures are preordered groups, metric and ultrametric groups, probabilistic (ultra)metric groups. In particular, we show that, when V is a frame, symmetric V-groups satisfy very strong categorical-algebraic properties, typical of the category of groups. In particular, symmetric V-groups form a protomodular category.
On the categorical behaviour of V-groups / M.M. Clementino, A. Montoli. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 225:4(2021), pp. 106550.1-106550.24. [10.1016/j.jpaa.2020.106550]
On the categorical behaviour of V-groups
A. Montoli
2021
Abstract
We consider compatible group structures on a V-category, where V is a quantale, and we study the topological and algebraic properties of such groups. Examples of such structures are preordered groups, metric and ultrametric groups, probabilistic (ultra)metric groups. In particular, we show that, when V is a frame, symmetric V-groups satisfy very strong categorical-algebraic properties, typical of the category of groups. In particular, symmetric V-groups form a protomodular category.File | Dimensione | Formato | |
---|---|---|---|
2005.07738.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
297.06 kB
Formato
Adobe PDF
|
297.06 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022404920302516-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
489.94 kB
Formato
Adobe PDF
|
489.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.