Background: In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. Objectives: We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. Methods: Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. Results: Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. Conclusions: Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit..

Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion / G. Natale, A. Pignataro, G. Marino, F. Campanelli, V. Calabrese, A. Cardinale, S. Pelucchi, E. Marcello, F. Gardoni, M.T. Viscomi, B. Picconi, M. Ammassari-Teule, P. Calabresi, V. Ghiglieri. - In: MOVEMENT DISORDERS. - ISSN 0885-3185. - (2021 Aug 02). [Epub ahead of print] [10.1002/mds.28671]

Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion

S. Pelucchi;E. Marcello;F. Gardoni;
2021-08-02

Abstract

Background: In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. Objectives: We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. Methods: Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. Results: Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. Conclusions: Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit..
dendritic spines; GluN2B; noninvasive brain stimulation; partial dopamine denervation; striatum
Settore BIO/14 - Farmacologia
2-ago-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Movement disorders mds.28671.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/867452
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact