Let E⊂ RN be a compact set and C⊂ RN be a convex body with 0∈intC. We prove that the topological boundary of the anisotropic enlargement E+ rC is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function VE(r) : = | E+ rC| proving a formula for the right and the left derivatives at any r> 0 which implies that VE is of class C1 up to a countable set completely characterized. Moreover, some properties on the second derivative of VE are proved.
Anisotropic tubular neighborhoods of sets / A. Chambolle, L. Lussardi, E. Villa. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 299:3-4(2021 Dec), pp. 1257-1274. [10.1007/s00209-021-02715-9]
Anisotropic tubular neighborhoods of sets
E. Villa
2021
Abstract
Let E⊂ RN be a compact set and C⊂ RN be a convex body with 0∈intC. We prove that the topological boundary of the anisotropic enlargement E+ rC is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function VE(r) : = | E+ rC| proving a formula for the right and the left derivatives at any r> 0 which implies that VE is of class C1 up to a countable set completely characterized. Moreover, some properties on the second derivative of VE are proved.File | Dimensione | Formato | |
---|---|---|---|
versione su rivista.pdf
accesso aperto
Descrizione: online first
Tipologia:
Publisher's version/PDF
Dimensione
350.65 kB
Formato
Adobe PDF
|
350.65 kB | Adobe PDF | Visualizza/Apri |
Chambolle2021_Article_AnisotropicTubularNeighborhood.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
330.87 kB
Formato
Adobe PDF
|
330.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.