In this work, some physical mixtures of Nb2O5·nH2O and NbOPO4 were prepared to study the role of phosphate groups in the total acidity of samples and in two reactions involving carbohydrate biomass: hydrolysis of polyfructane and dehydration of fructose/glucose to 5-hydroxymethylfurfural (HMF). The acid and catalytic properties of the mixtures were dominated by the phosphate group enrichment. Lewis and Brønsted acid sites were detected by FT-IR experiments with pyridine adsorption/desorption under dry and wet conditions. Lewis acidity decreased with NbP in the composition, while total acidity of the samples, measured by titrations with phenylethylamine in cyclohexane (~3.5 μeq m−2) and water (~2.7 μeq m−2), maintained almost the same values. Inulin conversion took advantage of the presence of surfaces rich in Brønsted sites, and NbOPO4 showed the best hydrolysis activity with glucose/fructose formation. The catalyst with a more phosphated surface showed less deactivation during the dehydration of fructose/glucose into HMF.
Phosphate Enrichment of Niobium-Based Catalytic Surfaces in Relation to Reactions of Carbohydrate Biomass Conversion: The Case Studies of Inulin Hydrolysis and Fructose Dehydration / M.N. Catrinck, S. Campisi, P. Carniti, R.F. Teófilo, F. Bossola, A. Gervasini. - In: CATALYSTS. - ISSN 2073-4344. - 11:9(2021), pp. 1077.1-1077.21. [10.3390/catal11091077]
Phosphate Enrichment of Niobium-Based Catalytic Surfaces in Relation to Reactions of Carbohydrate Biomass Conversion: The Case Studies of Inulin Hydrolysis and Fructose Dehydration
S. CampisiCo-primo
;P. Carniti;A. Gervasini
2021
Abstract
In this work, some physical mixtures of Nb2O5·nH2O and NbOPO4 were prepared to study the role of phosphate groups in the total acidity of samples and in two reactions involving carbohydrate biomass: hydrolysis of polyfructane and dehydration of fructose/glucose to 5-hydroxymethylfurfural (HMF). The acid and catalytic properties of the mixtures were dominated by the phosphate group enrichment. Lewis and Brønsted acid sites were detected by FT-IR experiments with pyridine adsorption/desorption under dry and wet conditions. Lewis acidity decreased with NbP in the composition, while total acidity of the samples, measured by titrations with phenylethylamine in cyclohexane (~3.5 μeq m−2) and water (~2.7 μeq m−2), maintained almost the same values. Inulin conversion took advantage of the presence of surfaces rich in Brønsted sites, and NbOPO4 showed the best hydrolysis activity with glucose/fructose formation. The catalyst with a more phosphated surface showed less deactivation during the dehydration of fructose/glucose into HMF.File | Dimensione | Formato | |
---|---|---|---|
Catalysts_290721.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
catalysts-11-01077.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.