We explore how measurements of protoplanetary disc masses and accretion rates provided by surveys of star-forming regions can be analysed via the dimensionless accretion parameter, which we define as the product of the accretion rate and stellar age divided by the disc mass. By extending and generalizing the study of Jones et al., we demonstrate that this parameter should be less than or of order unity for a wide range of evolutionary scenarios, rising above unity only during the final stages of outside-in clearing by external photoevaporation. We use this result to assess the reliability of disc mass estimates derived from CO isotopologues and sub-mm continuum emission by examining the distribution of accretion efficiencies in regions that are not subject to external photoevaporation. We find that while dust-based mass estimates produce results compatible with theoretical expectations assuming a canonical dust-to-gas ratio, the systematically lower CO-based estimates yield accretion efficiencies significantly above unity in contrast with the theory. This finding provides additional evidence that CObased disc masses are an underestimate, in line with arguments that have been made on the basis of chemical modelling of relatively small samples. On the other hand, we demonstrate that dust-based mass estimates are sufficiently accurate to reveal distinctly higher accretion efficiencies in the Trapezium cluster, where this result is expected, given the evident importance of external photoevaporation. We therefore propose the dimensionless accretion parameter as a new diagnostic of external photoevaporation in other star-forming regions.

Constraining protoplanetary disc evolution using accretion rate and disc mass measurements: The usefulness of the dimensionless accretion parameter / G.P. Rosotti, C.J. Clarke, C.F. Manara, S. Facchini. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 468:2(2017), pp. 1631-1638. [10.1093/mnras/stx595]

Constraining protoplanetary disc evolution using accretion rate and disc mass measurements: The usefulness of the dimensionless accretion parameter

G.P. Rosotti
;
S. Facchini
2017

Abstract

We explore how measurements of protoplanetary disc masses and accretion rates provided by surveys of star-forming regions can be analysed via the dimensionless accretion parameter, which we define as the product of the accretion rate and stellar age divided by the disc mass. By extending and generalizing the study of Jones et al., we demonstrate that this parameter should be less than or of order unity for a wide range of evolutionary scenarios, rising above unity only during the final stages of outside-in clearing by external photoevaporation. We use this result to assess the reliability of disc mass estimates derived from CO isotopologues and sub-mm continuum emission by examining the distribution of accretion efficiencies in regions that are not subject to external photoevaporation. We find that while dust-based mass estimates produce results compatible with theoretical expectations assuming a canonical dust-to-gas ratio, the systematically lower CO-based estimates yield accretion efficiencies significantly above unity in contrast with the theory. This finding provides additional evidence that CObased disc masses are an underestimate, in line with arguments that have been made on the basis of chemical modelling of relatively small samples. On the other hand, we demonstrate that dust-based mass estimates are sufficiently accurate to reveal distinctly higher accretion efficiencies in the Trapezium cluster, where this result is expected, given the evident importance of external photoevaporation. We therefore propose the dimensionless accretion parameter as a new diagnostic of external photoevaporation in other star-forming regions.
Accretion; Accretion discs; Herbig Ae/Be; Protoplanetary discs; Stars: pre-main-sequence; Stars: variables: T Tauri
Settore FIS/05 - Astronomia e Astrofisica
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rosotti2017_arxiv.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 966.3 kB
Formato Adobe PDF
966.3 kB Adobe PDF Visualizza/Apri
Rosotti2017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/866494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 66
social impact