The effect of dispersion corrections at a range of theory levels on the chemisorption properties of metallic nanoparticles is presented. The site preference for CO on Pt, Au, Pd, and Ir nanoparticles is determined for two geometries, the 38-atom truncated octahedron and the 55-atom icosahedron using density functional theory (DFT). The effects of Grimme's DFT-D2 and DFT-D3 corrections and the optPBE vdW-DF on the site preference of CO is then compared to the "standard" DFT results. Functional behavior is shown to depend not only on the metal but also on the geometry of the nanoparticle with significant effects seen for Pt and Au. There are both qualitative and quantitative differences between the functionals, with significant energetic differences in the chemical ordering of inequivalent sites and adsorption energies varying by up to 1.6 eV.

The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles / J.B.A. Davis, F. Baletto, R.L. Johnston. - In: JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY. - ISSN 1089-5639. - 119:37(2015), pp. 9703-9709. [10.1021/acs.jpca.5b05710]

The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles

F. Baletto;
2015

Abstract

The effect of dispersion corrections at a range of theory levels on the chemisorption properties of metallic nanoparticles is presented. The site preference for CO on Pt, Au, Pd, and Ir nanoparticles is determined for two geometries, the 38-atom truncated octahedron and the 55-atom icosahedron using density functional theory (DFT). The effects of Grimme's DFT-D2 and DFT-D3 corrections and the optPBE vdW-DF on the site preference of CO is then compared to the "standard" DFT results. Functional behavior is shown to depend not only on the metal but also on the geometry of the nanoparticle with significant effects seen for Pt and Au. There are both qualitative and quantitative differences between the functionals, with significant energetic differences in the chemical ordering of inequivalent sites and adsorption energies varying by up to 1.6 eV.
Settore FIS/03 - Fisica della Materia
Article (author)
File in questo prodotto:
File Dimensione Formato  
JPCA_119_9703.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/865356
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 50
social impact