The thermal behaviour of a natural allanite-(Ce) has been investigated up to 1073 K (at room pressure) by means of in situ synchrotron powder X-ray diffraction and single-crystal neutron diffraction. Allanite preserves its crystallinity up to 1073 K. However, up to 700 K, the thermal behaviour along the three principal crystallographic axes, of the monoclinic β angle and of the unit-cell volume follow monotonically increasing trends, which are almost linear. At T > 700–800 K, a drastic change takes place: an inversion of the trend is observed along the a and b axes (more pronounced along b) and for the monoclinic β angle; in contrast, an anomalous increase of the expansion is observed along the c axis, which controls the positive trend experienced by the unit-cell volume at T > 700–800 K. Data collected back to room T, after the HT experiments, show unit-cell parameters significantly different with respect to those previously measured at 293 K: allanite responds with an ideal elastic behaviour up to 700 K, and at T > 700–800 K its behaviour deviates from the elasticity field. The thermo-elastic behaviour up to 700 K was modelled with a modified Holland–Powell EoS; for the unit-cell volume, we obtained the following parameters: VT0 = 467.33(6) Å3 and αT0(V) = 2.8(3) × 10–5 K−1. The thermal anisotropy, derived on the basis of the axial expansion along the three main crystallographic directions, is the following: αT0(a):αT0(b):αT0(c) = 1.08:1:1.36. The T-induced mechanisms, at the atomic scale, are described on the basis of the neutron structure refinements at different temperatures. Evidence of dehydroxylation effect at T ≥ 848 K are reported. A comparison between the thermal behaviour of allanite, epidote and clinozoisite is carried out.

Allanite at high temperature: effect of REE on the thermal behaviour of epidote-group minerals / G. Diego Gatta, F. Pagliaro, P. Lotti, A. Guastoni, L. Cañadillas-Delgado, O. Fabelo, L. Gigli. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - 48:9(2021 Sep), pp. 32.1-32.16. [10.1007/s00269-021-01154-6]

Allanite at high temperature: effect of REE on the thermal behaviour of epidote-group minerals

G. Diego Gatta
Primo
Writing – Review & Editing
;
F. Pagliaro
Secondo
Writing – Review & Editing
;
P. Lotti
Membro del Collaboration Group
;
2021

Abstract

The thermal behaviour of a natural allanite-(Ce) has been investigated up to 1073 K (at room pressure) by means of in situ synchrotron powder X-ray diffraction and single-crystal neutron diffraction. Allanite preserves its crystallinity up to 1073 K. However, up to 700 K, the thermal behaviour along the three principal crystallographic axes, of the monoclinic β angle and of the unit-cell volume follow monotonically increasing trends, which are almost linear. At T > 700–800 K, a drastic change takes place: an inversion of the trend is observed along the a and b axes (more pronounced along b) and for the monoclinic β angle; in contrast, an anomalous increase of the expansion is observed along the c axis, which controls the positive trend experienced by the unit-cell volume at T > 700–800 K. Data collected back to room T, after the HT experiments, show unit-cell parameters significantly different with respect to those previously measured at 293 K: allanite responds with an ideal elastic behaviour up to 700 K, and at T > 700–800 K its behaviour deviates from the elasticity field. The thermo-elastic behaviour up to 700 K was modelled with a modified Holland–Powell EoS; for the unit-cell volume, we obtained the following parameters: VT0 = 467.33(6) Å3 and αT0(V) = 2.8(3) × 10–5 K−1. The thermal anisotropy, derived on the basis of the axial expansion along the three main crystallographic directions, is the following: αT0(a):αT0(b):αT0(c) = 1.08:1:1.36. The T-induced mechanisms, at the atomic scale, are described on the basis of the neutron structure refinements at different temperatures. Evidence of dehydroxylation effect at T ≥ 848 K are reported. A comparison between the thermal behaviour of allanite, epidote and clinozoisite is carried out.
Allanite; Epidote; High temperature; Single-crystal neutron diffraction; Synchrotron powder X-ray diffraction
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
set-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Allanite_HT_PCM2021.pdf

accesso aperto

Descrizione: online first
Tipologia: Publisher's version/PDF
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
Gatta2021_Article_AllaniteAtHighTemperatureEffec.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/863127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact