We show that algebraic (Formula presented.) -theory (Formula presented.) , the motivic Adams summand (Formula presented.) and their connective covers acquire unique (Formula presented.) structures refining naive multiplicative structures in the motivic stable homotopy category. The proofs combine (Formula presented.) -homology computations and work due to Robinson giving rise to motivic obstruction theory. As an application we employ a motivic to simplicial delooping argument to show a uniqueness result for (Formula presented.) structures on the (Formula presented.) -theory Nisnevich presheaf of spectra.

Existence and uniqueness of E-infinity structures on motivic K-theory spectra / N. Naumann, M. Spitzweck, P.A. Oestvaer. - In: JOURNAL OF HOMOTOPY AND RELATED STRUCTURES. - ISSN 1512-2891. - 10:3(2015), pp. 333-346. [10.1007/s40062-013-0062-3]

Existence and uniqueness of E-infinity structures on motivic K-theory spectra

P.A. Oestvaer
2015

Abstract

We show that algebraic (Formula presented.) -theory (Formula presented.) , the motivic Adams summand (Formula presented.) and their connective covers acquire unique (Formula presented.) structures refining naive multiplicative structures in the motivic stable homotopy category. The proofs combine (Formula presented.) -homology computations and work due to Robinson giving rise to motivic obstruction theory. As an application we employ a motivic to simplicial delooping argument to show a uniqueness result for (Formula presented.) structures on the (Formula presented.) -theory Nisnevich presheaf of spectra.
Motivic homotopy theory; E∞; structures;· Algebraic K-theory
Settore MAT/03 - Geometria
31-ott-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
1010.3944.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 189.44 kB
Formato Adobe PDF
189.44 kB Adobe PDF Visualizza/Apri
Naumann2015_Article_ExistenceAndUniquenessOfEInfty.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 456.34 kB
Formato Adobe PDF
456.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/860167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact