We compute the 1-line of stable homotopy groups of motivic spheres over fields of characteristic not two in terms of hermitian and Milnor K-groups. This is achieved by solving questions about convergence and differentials in the slice spectral sequence.

The first stable homotopy groups of motivic spheres / O. Röndigs, M. Spitzweck, P.A. Oestvaer. - In: ANNALS OF MATHEMATICS. - ISSN 0003-486X. - 189:1(2019 Jan), pp. 1-74. [10.4007/annals.2019.189.1.1]

The first stable homotopy groups of motivic spheres

P.A. Oestvaer
Ultimo
2019-01

Abstract

We compute the 1-line of stable homotopy groups of motivic spheres over fields of characteristic not two in terms of hermitian and Milnor K-groups. This is achieved by solving questions about convergence and differentials in the slice spectral sequence.
Stable homotopy of motivic spheres; slices and the slice spectral sequence; Morel's pi(1)-conjecture;
Settore MAT/03 - Geometria
Article (author)
File in questo prodotto:
File Dimensione Formato  
1604.00365.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 741.39 kB
Formato Adobe PDF
741.39 kB Adobe PDF Visualizza/Apri
FrstStableHomotopyGroups.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 781.91 kB
Formato Adobe PDF
781.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/860096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 19
social impact