In this paper we obtain the following stability result for periodic multi-solitons of the KdV equation: We prove that under any given semilinear Hamiltonian perturbation of small size ε> 0 , a large class of periodic multi-solitons of the KdV equation, including ones of large amplitude, are orbitally stable for a time interval of length at least O(ε- 2). To the best of our knowledge, this is the first stability result of such type for periodic multi-solitons of large size of an integrable PDE.
On the Stability of Periodic Multi-Solitons of the KdV Equation / T. Kappeler, R. Montalto. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 385:3(2021), pp. 1871-1956. [10.1007/s00220-021-04089-9]
On the Stability of Periodic Multi-Solitons of the KdV Equation
R. Montalto
2021
Abstract
In this paper we obtain the following stability result for periodic multi-solitons of the KdV equation: We prove that under any given semilinear Hamiltonian perturbation of small size ε> 0 , a large class of periodic multi-solitons of the KdV equation, including ones of large amplitude, are orbitally stable for a time interval of length at least O(ε- 2). To the best of our knowledge, this is the first stability result of such type for periodic multi-solitons of large size of an integrable PDE.File | Dimensione | Formato | |
---|---|---|---|
2009.02721.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
847.56 kB
Formato
Adobe PDF
|
847.56 kB | Adobe PDF | Visualizza/Apri |
Kappeler-Montalto2021_Article_OnTheStabilityOfPeriodicMulti-.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.