The crystal chemistry of probertite, a mineral commodity of B (B2O3 ~50 wt%) with ideal formula CaNa[B5O7(OH)4]·3H2O from the Kramer Deposit (Kern County, California, type locality), was investigated by a multi-methodological approach [i.e., single-crystal X‑ray (at 293 K) and neutron (at 20 K) diffraction, EPMA-WDS, LA-ICP-MS, and LA-MC-ICP-MS]. As recently determined for other hydrous borates, the real chemical formula of probertite from the Kramer Deposit is virtually ideal, i.e., the fractions of other elements are insignificant. Therefore, excluding B, probertite does not act as a geochemical trap of other industrially relevant elements (e.g., Li, Be, or REE). Our experimental results confirm that the structure of probertite is built up by the so-called pentaborate polyanion [B5O7(OH)4]3−(topology: 5(2Δ + 3T)], which consists of oxygen-sharing B-tetrahedra and B-triangular units. The five (geometrical) components of the polyanion are BO3, BO2OH, BO4, BO3OH, and BO2(OH)2 groups. The pentaborate building units are connected to form chains running along [100]. Clusters of distorted Ca-polyhedra [CaO5(OH)3(OH2), CN = 9] and Na-polyhedra [NaO(OH)2(OH2)3, CN = 6] are mutually connected by edge-sharing and, in turn, connected to the pentaborate chains by edge-sharing (with the Ca-polyhedron) and corner-sharing (with the Na-polyhedron). The hydrogen-bonding scheme of the probertite structure is complex and pervasive, with 10 independent H sites (belonging to hydroxyl groups or H2O molecules) and 11 of the 14 oxygen sites being involved in H-bonds as donor or acceptors. Hence, the H-bonding network likely plays an important role in the stability of probertite. In addition, the potential utilizations of probertite are discussed.
Crystal-chemical reinvestigation of probertite, CaNa[B5O7(OH)4]·3H2O, a mineral commodity of boron / G.D. Gatta, E. Cannao', V. Gagliardi, O. Fabello. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 107:(2022 Jul), pp. 1378-1384. [10.2138/am-2022-8086]
Crystal-chemical reinvestigation of probertite, CaNa[B5O7(OH)4]·3H2O, a mineral commodity of boron
G.D. Gatta
Primo
Writing – Review & Editing
;E. Cannao'Secondo
;
2022
Abstract
The crystal chemistry of probertite, a mineral commodity of B (B2O3 ~50 wt%) with ideal formula CaNa[B5O7(OH)4]·3H2O from the Kramer Deposit (Kern County, California, type locality), was investigated by a multi-methodological approach [i.e., single-crystal X‑ray (at 293 K) and neutron (at 20 K) diffraction, EPMA-WDS, LA-ICP-MS, and LA-MC-ICP-MS]. As recently determined for other hydrous borates, the real chemical formula of probertite from the Kramer Deposit is virtually ideal, i.e., the fractions of other elements are insignificant. Therefore, excluding B, probertite does not act as a geochemical trap of other industrially relevant elements (e.g., Li, Be, or REE). Our experimental results confirm that the structure of probertite is built up by the so-called pentaborate polyanion [B5O7(OH)4]3−(topology: 5(2Δ + 3T)], which consists of oxygen-sharing B-tetrahedra and B-triangular units. The five (geometrical) components of the polyanion are BO3, BO2OH, BO4, BO3OH, and BO2(OH)2 groups. The pentaborate building units are connected to form chains running along [100]. Clusters of distorted Ca-polyhedra [CaO5(OH)3(OH2), CN = 9] and Na-polyhedra [NaO(OH)2(OH2)3, CN = 6] are mutually connected by edge-sharing and, in turn, connected to the pentaborate chains by edge-sharing (with the Ca-polyhedron) and corner-sharing (with the Na-polyhedron). The hydrogen-bonding scheme of the probertite structure is complex and pervasive, with 10 independent H sites (belonging to hydroxyl groups or H2O molecules) and 11 of the 14 oxygen sites being involved in H-bonds as donor or acceptors. Hence, the H-bonding network likely plays an important role in the stability of probertite. In addition, the potential utilizations of probertite are discussed.File | Dimensione | Formato | |
---|---|---|---|
8086GattaPreprint_Probertite_AmMineral.pdf
Open Access dal 02/07/2023
Descrizione: Versione accettata dall'editore per la stampa, e reperibile in http://www.minsocam.org/msa/Ammin/AM_Preprints.html
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
993.19 kB
Formato
Adobe PDF
|
993.19 kB | Adobe PDF | Visualizza/Apri |
Probertite_AmMineral2022.pdf
solo utenti autorizzati
Descrizione: Versione pubblicata (Luglio 2022)
Tipologia:
Publisher's version/PDF
Dimensione
914.09 kB
Formato
Adobe PDF
|
914.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.