Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells / R.S. Lindoso, F. Collino, G. Camussi. - In: ONCOTARGET. - ISSN 1949-2553. - 6:10(2015), pp. 7959-7969. [10.18632/oncotarget.3503]

Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells

F. Collino;
2015

Abstract

Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.
Cancer stem cells; Extracellular vesicles; Mesenchymal stromal cells; Renal carcinoma; Tumor growth
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
Settore MED/04 - Patologia Generale
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
3503-44193-2-PB.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/856778
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 76
social impact