Introduction: Breast adenoid cystic carcinoma (AdCC) is a rare type of triple-negative breast cancer associated with an indolent clinical behavior. AdCCs provide a clear example of genotypic-phenotypic correlation with the majority harboring the MYB-NFIB fusion gene. In this study, we sought to identify alternative driver genetic alterations in breast AdCCs lacking the MYB-NFIB fusion gene. Methods: Nucleic acids obtained from four breast AdCCs lacking the MYB-NFIB fusion gene as defined by reverse transcription (RT)-PCR and/or fluorescence in situ hybridization (FISH) were subjected to RNA-sequencing (n=3), whole-genome (n=2) and/or targeted (n=1) massively parallel sequencing. Sequencing data were analyzed using state-of-the-art bioinformatics algorithms, and potential alternative driver genetic alterations were validated using orthogonal sequencing and molecular pathology methods. Results: RNA-sequencing revealed the presence of MYBL1-ACTN1 or MYBL1-NFIB fusion genes in two breast AdCCs, which were validated by whole-genome sequencing and/or MYBL1 FISH analysis. Both MYBL1 fusion gene-positive cases were found to overexpress MYBL1 as defined by quantitative RT-PCR analysis. In the third MYB-NFIB-negative breast AdCC studied, a high-level MYB gene amplification coupled with overexpression of MYB at the mRNA and protein levels was identified. In the fourth breast AdCC, which expressed high levels of MYB, whole-genome and RNA-sequencing revealed no definite alternative driver alteration, however, a MYBL2 intronic mutation was found in this case, which was associated with high levels of MYBL2 mRNA expression. In this case, single sample gene set enrichment analysis revealed activation of pathways similar to those activated in AdCCs harboring the MYB-NFIB or MYBL1 fusions genes. Conclusion: We demonstrate that in breast AdCCs lacking the MYB-NFIB fusion gene MYBL1 rearrangements and MYB amplification are likely alternative driver genetic events. Given that activation of MYB/MYBL1 and their downstream targets can be driven by the MYB-NFIB fusion gene, MYBL1 rearrangements, MYB amplification or other yet to be validated mechanisms (e.g. MYBL2 non-coding mutations), our findings further suggest that breast AdCCs constitute a convergent phenotype.

Novel driver genetic alterations in MYB-NFIB-negative breast adenoid cystic carcinomas / J. Kim, F.C. Geyer, L.G. Martelotto, C.K.Y. Ng, R.S. Lim, P. Selenica, A. Li, F. Pareja, N. Fusco, M. Edelweiss, O. Mariani, S. Badve, A. Vincent-Salomon, L. Norton, J.S. Reis-Filho, B. Weigelt. ((Intervento presentato al convegno San Antonio Breast Cancer Symposium-SABCS tenutosi a San Antonio, Texas, USA nel 2017.

Novel driver genetic alterations in MYB-NFIB-negative breast adenoid cystic carcinomas

N. Fusco;
2017

Abstract

Introduction: Breast adenoid cystic carcinoma (AdCC) is a rare type of triple-negative breast cancer associated with an indolent clinical behavior. AdCCs provide a clear example of genotypic-phenotypic correlation with the majority harboring the MYB-NFIB fusion gene. In this study, we sought to identify alternative driver genetic alterations in breast AdCCs lacking the MYB-NFIB fusion gene. Methods: Nucleic acids obtained from four breast AdCCs lacking the MYB-NFIB fusion gene as defined by reverse transcription (RT)-PCR and/or fluorescence in situ hybridization (FISH) were subjected to RNA-sequencing (n=3), whole-genome (n=2) and/or targeted (n=1) massively parallel sequencing. Sequencing data were analyzed using state-of-the-art bioinformatics algorithms, and potential alternative driver genetic alterations were validated using orthogonal sequencing and molecular pathology methods. Results: RNA-sequencing revealed the presence of MYBL1-ACTN1 or MYBL1-NFIB fusion genes in two breast AdCCs, which were validated by whole-genome sequencing and/or MYBL1 FISH analysis. Both MYBL1 fusion gene-positive cases were found to overexpress MYBL1 as defined by quantitative RT-PCR analysis. In the third MYB-NFIB-negative breast AdCC studied, a high-level MYB gene amplification coupled with overexpression of MYB at the mRNA and protein levels was identified. In the fourth breast AdCC, which expressed high levels of MYB, whole-genome and RNA-sequencing revealed no definite alternative driver alteration, however, a MYBL2 intronic mutation was found in this case, which was associated with high levels of MYBL2 mRNA expression. In this case, single sample gene set enrichment analysis revealed activation of pathways similar to those activated in AdCCs harboring the MYB-NFIB or MYBL1 fusions genes. Conclusion: We demonstrate that in breast AdCCs lacking the MYB-NFIB fusion gene MYBL1 rearrangements and MYB amplification are likely alternative driver genetic events. Given that activation of MYB/MYBL1 and their downstream targets can be driven by the MYB-NFIB fusion gene, MYBL1 rearrangements, MYB amplification or other yet to be validated mechanisms (e.g. MYBL2 non-coding mutations), our findings further suggest that breast AdCCs constitute a convergent phenotype.
2017
Settore MED/08 - Anatomia Patologica
Novel driver genetic alterations in MYB-NFIB-negative breast adenoid cystic carcinomas / J. Kim, F.C. Geyer, L.G. Martelotto, C.K.Y. Ng, R.S. Lim, P. Selenica, A. Li, F. Pareja, N. Fusco, M. Edelweiss, O. Mariani, S. Badve, A. Vincent-Salomon, L. Norton, J.S. Reis-Filho, B. Weigelt. ((Intervento presentato al convegno San Antonio Breast Cancer Symposium-SABCS tenutosi a San Antonio, Texas, USA nel 2017.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/856397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact