REE orthoarsenates and orthophosphates are common accessory minerals characterized by the general chemical formula REEXO4, where REE represents one of the lanthanides (La-Lu series), Y, Sc, Ca or Th, whereas X stands for As, P or Si. In the framework of a long-term project on the high-T/high-P crystal-chemistry and phase-stability of REE-bearing minerals, the high-pressure behavior of chernovite-(Y) (nominally YAsO4), xenotime-(Y) (nominally YPO4) gasparite-(Ce) (nominally CeAsO4) and monazite-(Ce) (nominally CePO4), has been studied. Chernovite-(Y) and xenotime-(Y) show a HREE- (Gd-Lu series) and Y-enrichment, and the same tetragonal symmetry (space group I41/amd), whereas gasparite-(Ce) and monazite-(Ce) share the same LREE (La-Eu) enrichment and monoclinic cell (space group P21/n). All these minerals occur at Mt. Cervandone (Western Alps, Italy), a renowned Alpine REE-bearing mineral deposit. The crystal chemistry of the four minerals has been studied via EPM-WDS analysis. Excluding gasparite-(Ce), which formation is bound to the replacement of the mineral synchisite-(Ce) (CaCe(CO3)2F), a sensible enrichment in Gd and Ho is observed. Moreover, the majority of the chernovite-(Y) show a variable amount of ThO2, up to 13 wt%, and phosphorous as substitute for arsenic in almost every proportion. In the case of the monoclinic series between monazite-(Ce) and gaparite-(Ce), no solid solution has been observed. Experiments at high-pressure were performed by in situ synchrotron X-ray diffraction using a diamond anvil cell. The high-pressure behavior of single crystals of xenotime-(Y), gasparite-(Ce) and monazite-(Ce) has been studied up to ~20 GPa, whereas that of chernovite-(Y) has been studied by powder diffraction up to 8.20(5) GPa. A II-order Birch-Murnaghan equation of state was fitted to the V-P data, within the phase stability field of the minerals, yielding the following bulk moduli: KP0,T0 = 125(3) GPa (βV0 = 0.0080(2) GPa-1) for chernovite-(Y); KP0,T0 = 145(2) GPa (βV0 = 0.0069(1) GPa-1) for xenotime-(Y); KP0,T0 = 106.7(9) GPa (βV0 = 0.0094(1) GPa-1) for gasparite-(Ce), KP0,T0 = 121(2) GPa (βV0 = 0.0083(1) GPa-1) for monazite-(Ce). K’ = ∂KV/∂P = 4 (fixed) for all the minerals. Deformation mechanisms, at the atomic scale, were described on the basis of structure refinements. Acknowledgments: This research was partly funded by the PRIN2017 project “Mineral reactivity, a key to understand large-scale processes” (2017L83S77).
High-pressure crystal chemistry of four natural REE(As,P)O4 minerals from Mt. Cervandone, Italy / F. Pagliaro, P. Lotti, A. Guastoni, D. Comboni, G.D. Gatta, N. Rotiroti, S. Milani. ((Intervento presentato al convegno Virtual European Geological Union General Assembly tenutosi a online nel 2021.
High-pressure crystal chemistry of four natural REE(As,P)O4 minerals from Mt. Cervandone, Italy
F. Pagliaro
Primo
;P. Lotti;D. Comboni;G.D. Gatta;N. Rotiroti;S. Milani
2021
Abstract
REE orthoarsenates and orthophosphates are common accessory minerals characterized by the general chemical formula REEXO4, where REE represents one of the lanthanides (La-Lu series), Y, Sc, Ca or Th, whereas X stands for As, P or Si. In the framework of a long-term project on the high-T/high-P crystal-chemistry and phase-stability of REE-bearing minerals, the high-pressure behavior of chernovite-(Y) (nominally YAsO4), xenotime-(Y) (nominally YPO4) gasparite-(Ce) (nominally CeAsO4) and monazite-(Ce) (nominally CePO4), has been studied. Chernovite-(Y) and xenotime-(Y) show a HREE- (Gd-Lu series) and Y-enrichment, and the same tetragonal symmetry (space group I41/amd), whereas gasparite-(Ce) and monazite-(Ce) share the same LREE (La-Eu) enrichment and monoclinic cell (space group P21/n). All these minerals occur at Mt. Cervandone (Western Alps, Italy), a renowned Alpine REE-bearing mineral deposit. The crystal chemistry of the four minerals has been studied via EPM-WDS analysis. Excluding gasparite-(Ce), which formation is bound to the replacement of the mineral synchisite-(Ce) (CaCe(CO3)2F), a sensible enrichment in Gd and Ho is observed. Moreover, the majority of the chernovite-(Y) show a variable amount of ThO2, up to 13 wt%, and phosphorous as substitute for arsenic in almost every proportion. In the case of the monoclinic series between monazite-(Ce) and gaparite-(Ce), no solid solution has been observed. Experiments at high-pressure were performed by in situ synchrotron X-ray diffraction using a diamond anvil cell. The high-pressure behavior of single crystals of xenotime-(Y), gasparite-(Ce) and monazite-(Ce) has been studied up to ~20 GPa, whereas that of chernovite-(Y) has been studied by powder diffraction up to 8.20(5) GPa. A II-order Birch-Murnaghan equation of state was fitted to the V-P data, within the phase stability field of the minerals, yielding the following bulk moduli: KP0,T0 = 125(3) GPa (βV0 = 0.0080(2) GPa-1) for chernovite-(Y); KP0,T0 = 145(2) GPa (βV0 = 0.0069(1) GPa-1) for xenotime-(Y); KP0,T0 = 106.7(9) GPa (βV0 = 0.0094(1) GPa-1) for gasparite-(Ce), KP0,T0 = 121(2) GPa (βV0 = 0.0083(1) GPa-1) for monazite-(Ce). K’ = ∂KV/∂P = 4 (fixed) for all the minerals. Deformation mechanisms, at the atomic scale, were described on the basis of structure refinements. Acknowledgments: This research was partly funded by the PRIN2017 project “Mineral reactivity, a key to understand large-scale processes” (2017L83S77).File | Dimensione | Formato | |
---|---|---|---|
EGU21-5066-print.pdf
accesso aperto
Descrizione: Abstract pubblicato su sito congresso comprensivo di DOI
Tipologia:
Altro
Dimensione
299.54 kB
Formato
Adobe PDF
|
299.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.